
The Emerging Standard Neurobiological Model of Decision Making: 
Strengths, Weaknesses, and Future Directions

Page 1 of 28

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights 
Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in 
Oxford Handbooks Online for personal use (for details see Privacy Policy).

Subscriber: OUP-Reference Gratis Access; date: 08 February 2018

Abstract and Keywords

The standard neurobiological model of decision making has evolved, since the turn of the 
twenty-first century, from a confluence of economic, psychological, and neurosci- entific 
studies of how humans make choices. Two fundamental insights have guided the 
development of this model during this period, one drawn from economics and the other 
from neuroscience. The first derives from neoclassical economic theory, which 
unambiguously demonstrated that logically consistent choosers behave “as if” they had 
some internal, continuous, and monotonic representation of the values of any choice 
objects under consideration. The second insight derives from neurobiological studies 
suggesting that the brain can both represent, in patterns of local neural activity, and 
compare, by a process of interneuronal competition, internal representations of value 
associated with different choices.

Keywords: neuroeconomics, revealed-preference theory, prospect theory, decision under risk, probability 
weighting function, dopamine, reward prediction error, rein-forcement learning, medial prefrontal cortex, 
striatum

23.1 Overview
In the 1930s Samuelson famously demonstrated that consistent human choosers behave 
as if they had an internal representation of an idiosyncratic subjective value, or the utility, 
of choice objects under current consideration and selected from these internal 
representations the single choice object that had the highest utility. Taking that proof as a 
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starting point, many neuroeconomists have argued for a very literal and mechanistic 
reinterpretation of Samuelson’s insight: That consistent choosers behave as they do 

because they have an internal representation of subjective value encoded in units of 
physical action potentials per second in their brains (e.g., Dorris and Glimcher 2004; Kim 
et al. 2008; Hayden et al. 2009; Glimcher 2010, 2011). They hypothesize that the brain 
performs an argmax operation on this internal representation based on the ordering of 
these action potential rates to select the most desirable option from a choice set. Of 
course, it is critical to note that these action potential rates are physical objects that are 
fully cardinal and unique, a property that makes them quite different from an economist’s 
notion of utility. For that reason, and for others related to the causal relation between this 
activity and choice, this physical correlate of utility is typically referred to as subjective 
value.

This basic construct has led naturally to the notion that the human choice mechanism can 
be usefully divided into two subcomponents. The first is presumed to learn, represent, 
and store the values of goods and actions. The network in the brain involved in these 
computations is generally referred to as the valuation network. It is this 

mechanism that explains, for any given choice set, how humans assign values to choice 
objects that are unique to the individual decision maker. The second of these 
subcomponents is presumed to allow the direct comparison of two or more valued objects 
and results in the selection of the option associated with higher levels of neural activation 
through a “winner-take-all” computational process—an algorithmic instantiation of the 
mathematician’s argmax. The brain network that performs this algorithmic operation is 
typically referred to as the choice network. Although our current evidence suggests that 
these processes, and the networks that embody them, cannot be seen as entirely 
separate, there is good evidence that these processes are instantiated as, at least in part, 
separable and sequentially executed algorithms (for an alternative view see Padoa-
Schioppa 2011). It is this mechanism that explains how humans select the best option 
from any given choice set based on the values computed, stored, and represented in the 
antecedant valuation mechanism. Our goals in this chapter are to provide a more detailed 
overview of these two components and to discuss the strengths and weaknesses of this 
general two-stage model.

23.2 Stage 1: The Valuation Mechanism

23.2.1 Ordinal Utility to Cardinal Subjective Value

Perhaps the first critical challenge faced by any theory which assumes that humans 
choose the way they do because of an underlying utilitylike representation in the nervous 
system is that of ordinality. Since Pareto, nearly all economists have acknowledged that 
measurements of utility are largely ordinal. Although we can say that a chooser prefers 

(p. 689) 



The Emerging Standard Neurobiological Model of Decision Making: 
Strengths, Weaknesses, and Future Directions

Page 3 of 28

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights 
Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in 
Oxford Handbooks Online for personal use (for details see Privacy Policy).

Subscriber: OUP-Reference Gratis Access; date: 08 February 2018

apples to oranges based on, for example, the Strong Axiom of Revealed Preference 
(Houthakker 1950), we cannot meaningfully say either that an apple produces twice as 
much utility as an orange for some chooser or that an apple specifically produces 2 utils 
and an orange 1 util. Von Neumann and Morgenstern (1944) elaborated on this issue 
when they introduced the independence axiom, but even their approach only specifies 
utilities to within a linear transform. Ordinality (or perhaps weak cardinality in the case 
of vNM utilities) is a fundamental feature of economic utility derived by choice.

This is a challenge because the measurements neurobiologists make are fundamentally 
cardinal and necessarily unique. When neurobiologists measure activity in the nervous 
system, they typically employ one of two techniques: direct measurements of the times of 
occurrence of electrochemical action potentials in single nerve cells or indirect 
measurements of this activity using functional magnetic resonance imaging (fMRI). In 
either case, neurobiologists measure (with error) a unique and fully cardinal object. If, as 
all neurobiologists believe, all of human behavior is generated through transformations of 
this cardinally specified activity, then measurements in the nervous system 
cannot be measurements of utility itself. In practice, neuroeconomists address this issue 
by searching for neural signals that are linearly correlated with economically specified 
expected utilities or which correlate ordinally with less cardinal systems of utility. These 
signals are typically referred to as subjective values and are defined as real numbers 
ranging from zero to one thousand (the range of physically possible action potential 
rates). Mean subjective values are the mean firing rates of specific populations of 
neurons and are linearly proportional to fMRI measurements of these activities (Heeger 
and Ress 2002).  Note that mean subjective values predict choice stochastically, which 
reflects the fact that these action potential rates are stochastic.

Notice as well that the features of this stochasticity are reasonably well understood (e.g., 
Tolhurst et al. 1983; Glimcher 2005). This indicates that subjective value theory will be 
most closely allied with random utilitytype models from economics, a parallel now being 
carefully explored by a number of economists. Finally, subjective values, because of their 
causal relation to action, should be always consistent with choice, though stochastically, 
even when choice is not consistent with utility theory. This is, of course, a critical point 
that may turn out to have profound implications for welfare theory.

23.2.2 Primary Sensory Transformation and Subjective Value

Whence do these subjective values arise? To some degree they must arise from the 
algorithmic mechanisms that transform physical events in the outside world into neural 
activities that guide choice. The fact that all human choosers prefer sugar to quinine, to 
take one obvious example, must reflect innate properties of the mechanisms by which we 
sense the external world.

(p. 690) 
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In fact, these processes have now been widely studied, and the transformations 
that relate such external properties as sugar or quinine concentration to the internal (or 
endogenous) representations of these quantities tend to be strictly concave functions that 
bear a striking resemblance to utility functions in some regards (Fechner 1912; Stevens 
1957; Glimcher 2011). This set of observations has led quite naturally to the suggestion 
that at least one source of concavity in subjective values involves processes that simply 
learn, through repeated sampling, the action potential rates associated with repeatedly 
consumed goods.

23.2.3 Learning and Storing the Values of Actions

To understand how neurobiologists think about this process, consider what is typically 
called a Pavlovian conditioning task. In such a situation a cue, for example a visual 
stimulus, is presented to a subject and is followed by the delivery of a reward (a positively 
valued good). After experiencing several times this cue-reward pairing, the subjects begin 
to exhibit a direct response to the cue, suggesting (sometimes indirectly) that he or she 
views it as a positive utility shock. This is, of course, the famous salivating dog of Pavlov’s 
experiments (Pavlov 1927).

In 1997 Wolfram Schultz and his colleagues measured the mean action potential rates of 
a class of nerve cells in the base of the brain, midbrain dopamine (DA) neurons, while this 
process unfolded and found the following: When there was no cue associated with 
reward, there was a burst of DA firing at the time of reward delivery (figure 23.1). When 
a cue consistently preceded the reward, the activity of DA neurons at reward delivery 
would remain at their unique baseline (or zero) firing rate. But under these conditions, 
the DA neurons would fire at the time of cue presentation. Perhaps even more interesting, 
they observed a decrease in action potential rates (a uniquely negative number) when an 
apparently expected reward was omitted. These observations (figure 23.1) suggested that 
the dopamine signal could be seen as encoding a kind of “utility shock” that related 
expectations about future positive outcomes to the properties of directly sensed rewards.

This work has triggered enormous interest in the neuroscientific (and neuroeconomic) 
community. The primary question of interest is how to model the dynamics of neuronal 
activity that change with experience and how to relate these changes to choice behavior. 
A number of models have emerged, but the dominant class appears to be the temporal-
difference (TD) learning model developed by computer scientists Richard Sutton and 
Andrew Barto (Sutton and Barto 1981, 1988). This is an algorithmic model that provides 
clear ties to normative theories of learning.

Consider modeling the dynamics of DA activity in the Pavlovian conditioning task using 
the TD model. In this model, an agent computes an estimate of value separately at each 
moment in time within a trial (a trial being a stereotyped multi-period learning problem of 

(p. 691) 
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finite duration that is repeatedly encountered). Suppose that there are n time points 
within each trial. The consumption value available at time t within a trial

is defined by the sum of 
expected, temporally 
discounted future rewards 
during one entire trial:

(23.1)

where E[·] denotes expectation, r(t) is the physical reward experienced at time t, and γ = 
[0,1] is the discount parameter . By definition, V(t) can be further written as the sum of 
expected reward at time t and the value at t+1 weighted by γ:

(23.2)

Hence, the expected reward at time t is the difference between the estimate of value at 
time t, or V(t), and the estimate of value at t+1,V(t+1). The learning agent updates the 
value estimate by computing the prediction error δ(·)—the difference between actual 
reward received at t and expected reward at t, r(t)−E[r(t)]—by the following equation

(23.3)

Click to view larger

Figure 23.1  Activity of midbrain dopamine neurons 
in the Pavlovian conditioning task: (A) The DA 
neurons exhibit an increase in activity immediately 
after delivery of a reward (unconditioned stimulus, 
US) when no conditioned stimulus (CS) is presented 
prior to the reward. (B) After repeated CS–US 
pairings, when a CS is paired with a US, DA neurons 
start to show an increase in activity when CS is 
presented. At US delivery, DA activity remains at 
baseline level, when US was delivered. (C) At US 
delivery, DA activity goes below baseline when US is 
not delivered. Adapted from Schultz et al. (1997).

(p. 692) 
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where the updated value estimate at time t, V (t), is the current value 
estimate at time t, V (t), plus the weighted prediction error αδ(t). The weight α = 
[0,1] assigned to the prediction is a parameter that determines how fast the agent learns 
and is often referred to as the learning rate. Some normative conditions can be placed on 
this term, but a discussion of those details lies outside the scope of this presentation (see 

Sutton and Barto 1981 for details). Given equation (23.2), we can rewrite equation (23.3)
as

(23.4)

The attractive property of this model lies in the fact that the expected reward at any 
given point in time within a trial is the difference between the value estimate at that time 
point and the discounted value estimate at the next time point per equation (23.2). 
Because of this property, an update on the value estimate at the time of reward delivery 
would subsequently affect the value estimate of the preceding time point. Eventually 
(after a sufficient number of repeated trials), the value of any moment in time propagates 
back to the point where that future reward can first be anticipated. This backward 
propagation of expectation thus causes the agent (in at least some environments) to form 
correct (rational) expectations about all future reward deliveries with a nonzero 
probability of occurrence on cue presentation.The model thus learns what an economist 
might call “consumption paths” and responds to any event that signals a change in 
current or future consumption path with a learning signal. Of course, the goal of this 
learning is to develop a policy for choosing among possible consumption paths the one 
that maximizes the discounted sum of future rewards, but the details of the policy 
element would take us too far from the dopamine neurons that form our principle subject.

What is striking about the TD model is that it quite accurately describes the dynamics of 
DA neuron activity and how this activity changes over time in the Pavlovian learning 
tasks. These were the subjects of early DA studies. To summarize those empirical 
findings, DA neurons at the beginning of an experimental session do not fire when a 
visual cue is presented that, unknown to the subject, signals a future reward. Instead, 
these neurons fire when a reward is delivered. After repeated trials in which the cue-
reward association consistently happens, DA neurons come to fire at the time of cue 
presentation, that is, at the time of the utility shock. And this is, of course, exactly what is 
predicted by TD-class algorithms.

Perhaps it is not surprising that different learning models have been proposed that vary 
in some ways from this basic template but produce quantitatively similar results. For a 
discussion of TD-class algorithms and their limitations in explaining DA activity, see Niv 
and Montague (2008) and Daw and Tobler (2013). For recent advances in modeling 
reinforcement learning (RL) and, in particular, on dissociating the contributions of model-
free RL (e.g., the TD model) and model-based RL to choice and neural activity, see 

Gläscher et al. (2010) and Dawet al. (2011). Using methods from neoclassical economics, 
Caplin and Dean (2008) proposed an axiomatic description of this class of 

(p. 693) updated
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learning algorithm which has been more widely influential in economic circles and that 
has been tested empirically by Caplin et al. (2010). They identified a set of axioms that 
are necessary and sufficient conditions for representing utility shocks and found that 
brain activity (mean action potential rates measured with fMRI) in at least one brain 
region, the ventral striatum, met the axiomatic conditions in a way that could drive this 
kind of near-normative learning of the subjective values of consumable rewards. This 
brain area is rich in the neurotransmitter dopamine and receives direct projections from 
the midbrain DA system.

23.2.4 An Overview of the Network for Valuation

There is now accumulating evidence that neural circuitry including the midbrain DA 
neurons, mentioned above, and a series of other brain areas including the striatum, the 
ventromedial prefrontal cortex (vmPFC), and the orbitofrontal cortex (OFC) are involved 
in the representation of the subjective values of consumable goods and monetary rewards 
(Padoa-Schioppa and Assad 2006; Lau and Glimcher 2008; Plassmann et al. 2007; Chib et 
al. 2009; Levy and Glimcher 2011). Neuronal action potential rates in these areas have 
been widely shown to be both linearly proportional to the utilities (or expected utilities in 
probabilistic lotteries) and predictive of choice even when subjects behave inconsistently 
(e.g., Kable and Glimcher 2009). Moreover, a critical feature of these brain areas is that 
activity elicited by a given option, although stochastic in nature, is independent of what 
the other available options are (Padoa-Schioppa and Assad 2008). For reviews and meta-
analysis on the valuation system see Bartra et al. (2013) and Clithero and Rangel (2014).

23.3 Stage 2: The Choice Mechanism
The choice stage refers to the algorithmic processes that compare the subjective values 
associated with different objects in a choice set so as to guide the chooser. In principle, 
the neural circuits involved in the choice process should be able to represent the 
subjective value associated with each available option in any given choice set. Hence, the 
choice circuit should receive information about subjective value from the valuation 
circuit, but in a way restricted to the current choice set (figure 23.2). However, one 
should remain cautious when thinking algorithmically about the interaction between 
valuation and choice circuits as purely “feed forward” in the sense that subjective-value 
signals are passed unidirectionally from the valuation circuit to the choice circuit. In fact, 
these two systems are heavily and reciprocally interconnected, suggesting that as we 
come to understand the algorithmic process more completely, the logical separability of 
these two systems will come to be reduced. Indeed, there is already evidence that

(p. 695) 
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choice and valuation 
circuits may interact 
algorithmically. Although 
the implications of this for 
reduced-form models are 
currently unclear, several 
models have been 
proposed. In one model, 
Padoa-Schioppa (2011)
proposed that subjective 
value is being computed 
and compared in the space 
of “goods” in the OFC and 

that vmPFC and that these computations are done in a fashion that is independent of the 
sensorimotor contingencies of choice. After a choice is made, a transformation that maps 
the chosen good onto the appropriate course of action originates in the OFC and vmPFC 
and culminates in the planning and execution of motor action. Other models, such as the 
one proposed by Glimcher (e.g., Louie et al. 2011) and by Shadlen and colleagues (Gold 
and Shadlen 2007), emphasize value coding in the space of motor actions that are 
required to obtain the desirable goods. The latter view is reviewed in detail in the next 
section.

23.3.1 An Overview of the Network for Choice

Our current understanding of the value comparison process at the theoretical, 
algorithmic, and circuit levels is largely based (for technical reasons) on studies of a well-
understood model system of decisionmaking inmonkeys. In these awake-behaving monkey 
electrophysiology studies, monkeys choose between two lotteries by making an eye 
movement (saccade) to one of two possible visual targets that vary in the magnitude or 
probability of reward, sometimes under conditions of partial information. This model 
system consists of a heavily interconnected network of brain areas that participate in 
both the encoding of the subjective value of the lotteries under consideration and 
the winner-take-all, or argmax, process. The brain areas that participate in this process 
include the lateral intraparietal area (LIP), the frontal eye field (FEF), and the superior 
colliculus (SC) (figure 23.2). There is now accumulating evidence that this circuitry is 
involved in representing the relative subjective value (RSV) associated with different 
options (Platt and Glimcher 1999; Gold and Shadlen 2001; Louie et al. 2011). The current 
data suggest that at any moment in time neurons in the LIP represent the instantaneous 
RSV of each lottery (e.g., Dorris and Glimcher 2004; Rorie et al. 2010), a representation 
that is believed to be derived (algorithmically) from the representation of SV localized in 
the valuation network, particularly in the vmPFC, OFC, and ventral striatum.

Click to view larger

Figure 23.2  Neural circuitry of valuation and choice. 
(A) Valuation circuitry. (B) Choice circuitry. 
Structures in these networks and the directions of 
their connections are highlighted in black. Adapted 
from Kable and Glimcher (2009).

(p. 696) 
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Note that RSV would serve to map SV onto the limited dynamic range of the LIP neurons. 
Such neurons are limited in number, fire over a roughly 100Hz dynamic range, and have 
(errors that are drawn from) Poisson-like distributions. This means that the 
representation of RSV, rather than SV, in this structure may solve an important problem. 
The shift to RSV guarantees a distribution of the SVs of the current choice set over the 
limited dynamic range of these neurons. Unfortunately, the finite dynamic range and 
noise associated with these neurons may also impose a constraint. As the choice set 
becomes larger, noise may swamp the signal, leading to profound failures to 
deterministically identify the preferred option when selecting among large numbers of 
possible movements (Louie et al. 2013). In summary, the available data suggest that at all 
three of these areas, LIP, FEF and SC, carry signals encoding RSV and that movements 
occur when activity associated with one of the positively valued options drives its 
associated collicular neurons past a fixed numerical threshold, triggering the physical 
action that instantiates choice.

23.4 Future Directions
Although our current model incorporates many existing data and provides a useful 
framework for thinking about the neurobiological mechanisms of decision making, the 
model still lacks descriptions of certain concepts that have been identified by economists 
and psychologists as critical in the decisionmaking processes. In this section, we seek to 
expand the current model in two directions. The first direction is motivated by the notion 
of reference dependence, which, as many psychologists have argued (e.g., Kahneman and 
Tversky 1979), is a core feature of the valuation process. It has been observed not only in 
economic decision making but also in a wide variety of judgment tasks. Economists have 
also begun to incorporate this concept into newly developed models of decision making 
(Sugden 2003; Koszegi and Rabin 2006). This concept has not received much attention in 
the neuroeconomics community, but as we mention later, there is a close tie between 
what dopamine neurons encode and reference dependence. Our goal must therefore be to 
incorporate reference dependence to the computational algorithm implemented during 
valuation.

The second direction is motivated by the fact that in many decision scenarios we 
face, information about probability associated with potential outcomes is not explicitly 
given and often needs to be estimated by the decision maker. This feature makes these 
decisions unlike the classical lottery tasks studied in a typical economic laboratory, where 
probability information is explicitly revealed to the subjects in numerical or graphical 
form. We introduce recent studies concerning the way information about probability 
appears to be distorted (more formally: how the independence axiom is violated) in 
classical economic lottery tasks and in mathematically equivalent “motor” and 
“perceptual” lottery tasks. Our goal is to expand the standard model to include the 

(p. 697) 
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violations of the independence axiom in different tasks and to search for the algorithmic 
sources of this distortion at a neural level.

23.4.1 Incorporating Reference Dependence into Value Computation

Kahneman and Tversky (1979) defined the choice-related “value” (a utilitylike construct) 
of potential outcomes as gains or losses relative to a reference point. The reference point, 
as the authors put it, can be viewed as an adaptation level, status quo level, or 
expectation level defined by the past and present experiences of the decision maker. They 
argued that the evaluation of monetary changes from this reference point shares many of 
the mathematical properties of perceptual judgments about such things as sugar 
concentration, temperature, or brightness, and they noted that many of these perceptual 
experiences show shifting unique zero-levels that impact perception. For example, it is 
well known that in a room that is 15°C, it is easier to discriminate 17°C from 19°C than it 
is to discriminate 27°C from 29°C but the reverse is true when the room is 25°C. In more 
economic terms, the discriminability of temperature change decreases as the distance 
from the reference point increases (Weber 1850). This is relevant to economic choice 
because the neural mechanisms that underlie these phenomena are now fairly well 
understood and turn out to be ubiquitous. The second feature of Kahneman and Tversky’s 
reference-dependent value function is that it captures simultaneous risk aversion in the 
gain domain and risk-seeking in the loss domain (although there are, of course, other 
ways to capture this, e.g., Friedman and Savage 1948). The third feature of the value 
function is that it captures aversion to losses. As these authors often put it, losses loom 
larger than gains, for “the aggravation that one experiences in losing a sum of money 
appears to be greater than the pleasure associated with gaining the same amount 
(Kahneman and Tversky 1979, p. 279).” To understand loss aversion, consider a lottery 

(0.5,$x; 0.5,−$x) with a 50-50 chance of gaining $x or losing $x. Empirically, it has been 
observed that most people find this lottery very unattractive. Furthermore, for x > y ≥ 0, 
(0.5,$y; 0.5,−$y) is often preferred to (0.5,$x; 0.5,−$x), according to Kahneman and 
Tversky.They used these two observations to motivate a value function for losses that is 
steeper than the value function for gains.

Thus the value function they proposed was

(23.5)

where x denotes outcomes relative to the reference point, α and β characterize the 
curvature of the function in the gain domain and loss domain respectively, and λ is used to 
represent the degree of loss aversion.

In a seminal paper, Tom et al. (2007) attempted to study the neural basis of loss aversion 
using fMRI in humans. In their experiment, on each trial the subjects had to decide 
whether to accept or reject a mixed lottery (0.5,$x; 0.5,−$y), a 50-50 chance of winning 

(p. 698) 
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$x or losing $y. The amounts of gain and loss were independently manipulated 
throughout the experiment. This is critical because in the fMRI analysis, gains and losses 
could be implemented as separate and uncorrelated parametric regressors of interest. 
The authors found that regions including the ventromedial prefrontal cortex and the 
ventral striatum encode both the gains and the losses associated with any given lottery 
(figure 23.3a). Activity in these regions was positively correlated with gains and 
negatively correlated with losses. This result was consistent with Kahneman and 
Tversky’s value function if one assumes that the reference point was fixed at zero 
throughout the experiment for each subject and remained so across all subjects. When 
treating the value function as linear and only modeling the loss aversion parameter, Tom 
and colleagues found that their behavioral measure of λ was highly correlated with the 
neural measure of λ (the asymmetry of the gain and loss regression slopes) in regions 
including the ventral striatum (figure 23.3b). This pointed out the possibility of a neural 
representation of a simplified version of the value function in the valuation circuitry

that respects both 
the unique zero imposed 
by Kahneman and 
Tversky’s model and the 
gain-loss asymmetry that 
they hypothesized.

These advances at the 
neural-algorithmic level 
aside, Koszegi and Rabin 
(2006, 2007) have, in 
related work, begun to 
develop a behavioral 
model of reference-
dependent preferences in 
which they have defined 

the reference point as the decision maker’s rational beliefs about future outcomes. 
Instead of a fixed point or status quo, such rational beliefs are stochastic. Let r = [r , … , 
r ] ∈ R  denote the set of possible reference-level consumptions and G(r) denote the 
probability distribution over r. For an option with a set of potential consumption outcomes
c = [c , … , c ]∈R  with support F (c), the utility of this option is given by

(23.6)

where u(c|r) denotes the utility of a consumption given a reference level. What is unique 
about these authors’ definition is that of u(c|r). It is defined as the sum of two 
components: the consumption utility m(c)—the pure and absolute pleasure derived from 

Click to view larger

Figure 23.3  Neural correlates of gains, losses, and 
loss aversion - Neural correlates of gains, losses, and 
loss aversion. A. Neural correlates of gains and loses. 
Two separate, thresholed statistical parametric maps 
showing regions whose activity was negatively 
correlated with losses (blue), and regions whose 
activity was positively correlated with gains 
(orangeyellow). B. Neural measure of loss aversion 
obtained from ventral striatum (red) was correlated 
with behavioral measure of loss aversion. Adapted 
from Tom et al. (2007).

(p. 699) 
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consuming an outcome—and a reference-dependent gain-loss utility n(c|r) similar to 
Koszegi and Rabin’s value function

(23.7)

This implies that the utility of consuming an outcome has both absolute and relative 
components. The absolute component is the consumption utility m(c). The relative 
component is the reference-dependent gain-loss utility n(c|r). Specifically, n(c|r) is derived 
from comparing m(c) with the consumption utility of a reference level

(23.8)

Here, u(·) is the gain-loss utility function. In this definition, gain or loss associated with an 
outcome is based on comparing its consumption utility with that of a reference level. The 
utility of gain or loss is equivalent to saying “how a person feels about gaining or losing 
depends in a universal way on the changes of consumption utility associated with such 
gains or losses” (Koszegi and Rabin 2006, p. 1139).

Several intriguing features in Koszegi and Rabin’s formalization of the reference-
dependent utility deviate from Kahneman and Tversky’s reference-dependent value 
function. First, unlike Kahneman and Tversky’s model where reference point is a fixed 
value, reference point in Koszegi and Rabin is defined as probability distribution over 
potential outcomes. Specifically, such probability distribution reflects rational beliefs 
established on the basis of recent experience. Second, Koszegi and Rabin defined the 
utility associated with an outcome as the sum of its consumption utility, which is absolute 
and context-independent, and its gain-loss utility, which is relative and reference-
dependent. Third, gain-loss utility is strictly defined on the basis of consumption utility as 
in equation (23.8). Finally, gain-loss utility associated with a potential outcome 
depends on the deviation of the consumption utility of that outcome from the 
consumption utility of the reference level.

These different models thus provide exciting and interesting hypotheses for testing 
reference-dependent value computations performed at the neural level. We outline 
several questions of interest and testable hypotheses below.

(p. 700) 
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1. What is the neurobiological nature of consumption utility? Consumption utility is 
not required in the Kahneman and Tversky definition, but it is the core of the Koszegi 
and Rabin utility function. Hence, to be able test the two models at the neural level, 
one needs to first establish neurobiological evidence for the presence of consumption 
utility. The notion that it is absolute, strictly increasing, and represents the hedonic 
value of consuming a good or reward provides important search criteria for relevant 
neural signals. However, neurobiologists and economists need to work together to 
axiomatize the necessary and sufficient conditions for the neural consumption utility. 
For example, one key question is whether consumption utility necessarily and 
sufficiently requires one to measure neural signals at the time of consumption. 
Canneural signals associated with a cue that predicts a reward or neural signals 
right before consumption of the reward be labeled as consumption utility of that 
reward?
2. What are the neurobiological natures of gains and losses? Here, the two models 
provide different hypotheses because of their differences in defining the reference 
point. Kahneman and Tversky defined gain and loss with respect to something like a 
fixed status quo that is based on animals’ current state. This state can be the current 
wealth level (e.g., monetary rewards) or the satiation or consumption level (e.g., a 
primary reward such as food or juice). In contrast, Koszegi and Rabin defined a 
reward as a gain or loss by comparing its consumption utility with the expectations 
about rewards established by recent experience with the environment. Such 
expectations are summarized by a probability distribution on possible rewards. To 
test the two models, one needs to independently manipulate status quo and 
expectation. For example, status quo manipulation can be achieved via endowment 
(for monetary rewards) or selective satiation (for food or juice rewards) prior to an 
experimental session, while one can manipulate expectation by systematically 
varying rewards in terms of, (e.g., quantity, size, or type) that the subjects would 
experience in an experimental session.
3. If the answer to the previous question supports an expectation-based reference 
point, then one needs to further investigate whether the neural representation of the 
reference point is stochastic and how reference-dependent value computations take 
into account such a feature. Koszegi and Rabin provided a specific algorithm for such 
computations in equation (23.6). In summary, the utility of a potential reward is 
computed by the sum of the gain-loss utility associated with each possible reward 
weighted by its probability of occurrence.
4. Finally, a key feature of Koszegi and Rabin’s notion of “utility” is that it is 
composed of two components: the consumption utility of a potential reward and the 

gain-loss utility of that reward. To test this conjecture, one needs to 
independently manipulate these two components. For example, we can manipulate 
consumption utility on a trial-bytrial basis by varying the amount of juice reward 
associated with an option and, independent of this manipulation, we can manipulate 
the gain-loss utility by changing the reference-point distribution across different 
experimental sessions.

(p. 701) 
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The neurobiological evidence for valuation and choice accumulated since the beginning of 
the twentyfirst century has only provided some very preliminary results for resolving the 
questions outlined above. For example, we now know that the valuation system 
represents the expected value of a cue that predicts the delivery of a reward (e.g., Schultz 
et al. 1997; Tremblay and Schultz 1999). But do such signals reflect consumption utility? 
At the time of reward consumption, dopamine neurons and the ventral striatum encode 
prediction error. This seems to support the notion that the valuation network does not 
represent consumption utility–like signals. Rather, it encodes the deviation of actual 
outcome from expectation at the time of consumption. In contrast, there is evidence 
suggesting that the OFC might be a candidate region for representing consumption 
utility. Nurons in the OFC are known to selectively respond to different rewards. For 
example, a population of OFC neurons may respond only to grape juice, while another 
population may respond only to apple juice. Moreover, these neurons respond (1) at the 
time when the cue that predicts the specific reward is presented, (2) prior to reward 
delivery, and (3) immediately after reward delivery (Schultz et al. 2000). These results 
indicate distinct computation roles in the subcomponents of the valuation system and 
provide key insights into the formation of the reference point and how it relates to 
subjective value and choice at the neural algorithmic level. Another example of the 
challenge we face is the stochastic, expectation-based reference-point hypothesis. 
Although we know that the valuation network represents the expected value of a stimulus 
that predicts a reward at the time of stimulus presentation, we know very little about how 
such expected-value signals would be modulated by the expected value of other stimuli 
present in the recent past. What we know is that valuation signals in the OFC are context-
dependent. It adapts to the range of subjective values associated with rewards 
experienced in the recent past (Tremblay and Schultz 1999; Padoa-Schioppa 2009).

23.4.2 Decision Under Risk: Neural Representations and Distortions 
of Different Sources of Probability Information

In this section we focus on the representation of probability information, another key 
variable when people are engaged in decision making under risk. We begin with a review 
of past research on probability distortion in standard lottery tasks. Then we review recent 
behavioral and neural studies investigating how differences in the way information about 
probability is revealed to choosers affects how it is distorted. Finally, we discuss recent 
fMRI studies that employ these behavioral approaches to shed light on the neural 
representation of probability and the neural mechanisms underlying probability distortion 
(FitzGerald et al. 2010; Wu et al. 2011).

(p. 702) 
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23.4.2.1 The Allais Paradox and the Common Consequence Effect
Traditionally, in decision under risk, people choose between lotteries, expressed as 

 where x denotes the outcome and p denotes the probability of 

occurrence associated with the outcome (e.g.,Von Neumann and Morgenstern 1944). In 
expected utility theory (EUT), the desirability of a lottery is, of course, specified by its 
expected utility, the sum of the utility associated with each outcome weighted by its 
objective probability of occurrence. Formally, von Neumann and Morgenstern (1944)
expressed this with their independence axiom: for any lottery L  and L , if L  is preferred 
to L , then αL  + (1−α)L  should be preferred to αL  + (1−α)L , and vice versa, 0 < α ≤ 1. 
yet a wealth of empirical evidence now suggests that human choosers often violate this 
axiom(e.g., Allais 1953). Consider the following violation of independence from Kahneman 
and Tversky (1979):

1. Problem 1: Choose between A: (0.33, $2,500; 0.66, $2,400) and B: (1, $2,400)
2. Problem 2: Choose between C: (0.33, $2,500) and D: (0.34, $2,400)

In problem 1, 82 percent of subjects chose B, while 83 percent of subjects chose C in 
problem 2. This violates the independence axiom because adding a common consequence 
of a 66 percent chance of winning $2400 to C and D in problem 2 to construct A and B in 
problem 1 should not alter subjects’ choice. If subjects prefer A in problem 1, then they 
should prefer C in problem 2, and vice versa. If subjects prefer B in problem 1, then they 
should prefer D in problem 2 and vice versa.

In order to interpret the violation of the independence axiom in decision under risk, 
Kahneman and Tversky hypothesized that people assign nonlinear weights to 
probabilities when making risky decisions. The function that characterizes these 
nonlinear weights is often referred to as the weighting function π(·) (e.g., Kahneman and 
Tversky 1979; Tversky and Kahneman 1992) or the probability weighting function (Wu 
and Gonzalez 1996). Note that the weighting function is at least somewhat conceptually 
distinct from the notion of subjective probability advanced by Savage (Savage 1954). In 
the original prospect theory (Kahneman and Tversky 1979), the decision value (or 
prospect) over a lottery was hypothesized to be derived by choosers at an algorithmic 
level by the sum of the value associated with each outcome in the lottery (defined in 
equation [23.5] in the preceding section) weighted by its decision weight. Note that the 
decision weight associated with an outcome might not be the weight associated with its 
probability of occurrence. In the original prospect theory, this is the case. In the 
subsequent version, cumulative prospect theory, however, it is not. For example, in the 
original theory (Kahneman and Tversky 1979), the prospect of a lottery with two nonzero 
outcomes (p,$x;q,$y), x > y ≥ 0, p + q = 1 is v(y)+ π(p)[v(x)−v(y)] where π(·) is the 
weighting function and v(·) is the value function. In cumulative prospect theory, Tversky 
and Kahneman (1992) incorporated rank-dependence into this framework such 
that the prospect of a lottery became π (p)v(x) + [π (p+q) − π (p)] v(y).

1 2 1

2 1 3 2 3

(p. 703) 
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Broadly speaking, when models of this type are parameterized in any number of ways 
(e.g., Tversky and Kahneman 1992; Gonzalez and Wu 1999; Wu and Gonzalez 1996), π(·) is 
found to be well described by an inverse-S-shaped function, that is, a function that is 
concave at small probabilities and convex at moderate-to-large probabilities. Prelec 
(1998) developed an axiomatic foundation for these functions, deriving axioms that were 
necessary conditions for the probability weighting function proposed by Kahneman and 
Tversky (Kahneman and Tversky 1979; Tversky and Kahneman 1992). Since that time a 
host of studies have examined human choice behavior with prospect theory and the 
Prelec function and almost universally found that parameterizations indicate this inverse 
S-shaped structure for the Prelec function.

Notice, however, that nearly all of these parameterizations have been based on data 
gathered from human subjects in what might be called classical lottery tasks. In these 
kinds of experiments information about probability distributions on possible outcomes are 
explicitly described in numerical or graphical form to subjects who then express their 
preferences. What is worth noting is that this kind of decision making scenario describes 
only a subset of the risky decision making scenarios we face in everyday life. What is 
surprising is that a growing body of evidence now suggests that the parameterized 
probability weighting function extracted outside classical lottery tasks looks quite 
different from that extracted in these more classical situations.

23.4.2.2 Motor Decision Making and Probability Distortion
A baseball player deciding whether to swing a bat at an incoming ball is not given explicit 
numerical estimates of the probability of producing a base hit, a home run, or a miss. In 
situations like these, decision makers typically estimate probability based on experience. 
And of course these estimates must take into account a number of sources of variance 
including errors in neurobiologically derived estimates of the speed and position of the 
ball and estimates of the movement error associated with a plan to swing the bat toward 
a fixed location in space and time. How humans estimate probability in these situations, 
and how well they do it, are currently under intense investigation. There is accumulating 
evidence that in these domains humans achieve near-normative performance, taking into 
account noise coming from the perceptual and motor systems in a way that seems to obey 
the independence axiom (Geisler 1989; Trommershäuser et al. 2003b,a; Körding and 
Wolpert 2004; Najemnik and Geisler 2005; Tassinari et al. 2006; Battaglia and Schrater 
2007; Dean et al. 2007). These findings present a sharp contrast to results from economic 
decision under risk, in which information about probability is explicitly stated. Few 
studies, however, directly compared decision making in classical lottery tasks with 
perceptual or motor tasks.

To formally compare decision making under different modalities, Wu et al. (2009)
developed a method for translating a classical lottery to a mathematically equivalent 
“motor” (or movement-based) lottery (figure 23.4). They then asked the subjects to 
perform identical sets of incentive-compatible classical and motor lotteries. Information

(p. 704) 
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about the probability of 
winning in the motor 
lotteries depended on both 
the size of the target that 
the subjects had to 
successfully hit and the 
intrinsic variability of the 
subject’s movement (which 
subjects had to learn from 
experience).

In an initial training 
session aimed at teaching 
subjects about their 
movement variability, the 
subjects were asked to 
repeatedly and quickly 
(within <0.7 seconds) hit 
with their finger a 
rectangular target that 
appeared on a computer 
touchscreen. The size of 
that target was varied 
independently to control 
the probability of 
“winning” a given lottery 
(or trial). Hitting the 
target (p) resulted in a 
small monetary gain (v), 
and hitting anywhere else 
on the screen (1−p) won 
nothing (0).  The critical 
idea of these lotteries, 

what makes them lotteries, is that subjects do not have perfect control over their 
movements owing to intrinsic noise in the motor system introduced by the very short time 
window. After extensive training under the same time constraint, the motor noise often 
becomes stable at a within-subject level (Trommershäuser et al. 2003a,b). For the 
experimenter, this means that any binary lottery can be constructed once the movement 
variability, or “motor noise” has been measured, although the approach assumes that 
subjects can estimate the probability of their hitting a target given knowledge of their 
own motor noise.

Click to view larger

Figure 23.4  Construction of a motor lottery task. (A) 
In a rapid point task, the subjects were trained to hit 
a single target within a very short time window 
(usually < 0.7s). (B) Here we superimposed the 
distribution of movement end points from an actual 
subject. We verified that the distribution of 
movement end points is bivariate Gaussian and 
characterized motor noise by the estimated standard 
deviation (σ) of the distribution. For this subject (σ = 
4.25mm), this target was equivalent to a lottery 
(0.5,O ;0.5,0). (C) Given the motor noise separately 
estimated for each subject, we could translate a 
binary classical lottery task, for example, choosing 
between (0.5,$200; 0.5,$0) and (0.05,$2000; 0.5,$0), 
to a mathematically equivalent motor lottery task. In 
a later, decision-making phase of the experiment, we 
asked the subjects to choose between lotteries in 
classical tasks and in motor tasks. We emphasized 
that subjects during the motor lottery task only 
indicated which lottery they preferred. They did not 
execute any pointing movement during the decision 
tasks. Adapted from Wu et al. (2011).

1

2

(p. 705) 
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The questions raised by this line of research are whether decisions made in this way show 
different patterns of rationality, particularly with regard to the independence axiom, and 
whether they show different risk preferences. In fact, Wu and colleagues found that 
subjects violated the independence axiom in motor lotteries just as much as they violated 
the axiom in the classical lottery task. The pattern of violation was markedly different, 
however. Their parametric analysis suggested that this difference could be attributed to a 
change in the probability weighting function. Rather than the typical overweighting of 
small probabilities and underweighting of moderate-to-large probabilities, subjects in the 
motor task tend to underweight small probabilities and overweight moderate-to-large 
ones.

This pattern of inferred probability distortion is of particular interest because the ability 
of subjects to estimate the probability of reward in the motor lottery task depends on the 
subjects’ previous experience hitting targets on the touchscreen. Hence, it is an 
experience-based lottery task in which knowledge about probability associated with 
hitting motor targets was established by experience. Behavioral studies have begun to 
reveal that, as opposed to overweighting rare events when probability information is 
revealed explicitly, people tend to underweight rare events when information about 
probability associated with rare monetary gains is acquired by sampling experience 
(Hertwig et al. 2004; Jessup et al. 2008; Ungemach et al. 2009); for a review, see Hertwig 
and Erev (2009). This difference is often called the description-experience gap. Despite 
accumulating evidence suggesting the existence of such difference at the behavioral 
level, very few studies (FitzGerald et al. 2010; Wu et al. 2011) have directly compared the 
neural representation of probability in decision under risk when information about 
probability comes from different sources, for example, when it is described explicitly 
versus when it is learned from experience. That seems important because the neural 
measurements might give insight into the algorithmic constraints that shape these two 
classes of decision.

Neurobiological studies of decisions involving risk and uncertainty have identified the 
neural systems that correlate with these economic variables (Platt and Huettel 2008). In 
reinforcement learning tasks, dopamine neurons have been shown to represent the 
probability of both reward and risk (defined as the variance) associated with reward-
predicting stimuli (Fiorillo et al. 2003). In humans, fMRI studies have reported that the 
striatum, the anterior insula, the medial prefrontal cortex, lateral prefrontal cortex, and 
posterior parietal cortex represent these variables as well (FitzGerald et al. 2010;
Hsu et al. 2009; Huettel et al. 2005, 2006; Knutson et al. 2005; Paulus et al. 2003; 
Preuschoff et al. 2006; Tobler et al. 2008;Wu et al. 2011).

Unfortunately, the neural results available today are not entirely consistent. Wu and 
colleagues (2011) found that the medial prefrontal cortex (mPFC) encodes “probability 
weight” in a classical lottery task and in a motor lottery task. In that study, mPFC activity 
only showed correlation with probability of reward in the motor lottery but was not 
correlated with physical size of the target in a size judgment task in which the physical 
properties of the stimuli were identical to those in the motor lottery task (figure 23.5a). 

(p. 706) 
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Together, the results suggest a convergence of two mechanisms for probability encoding 
and pushes neuroeconomists to search upstream (in the algorithmic sense) for these two 
probabilityencoding mechanisms. Others, however, have found that activity in the 
dorsolateral prefrontal cortex (Tobler et al. 2008) and in the striatum (Hsu et al. 2009) is 
correlated with probability distortion in similar tasks. FitzGerald and colleagues (2010) 
had subjects choose between lotteries for which the probability of reward associated with 
one lottery was revealed explicitly and the probability of reward associated with the other 
was acquired by sampling experience. They found that at the time when the subjects 
were asked to choose between the lotteries, activity in the medial

prefrontal cortex 
and another area (the 
posterior cingulate cortex) 
was correlated with the 
decision-value of the 
lottery learned by 
experience, while activity 
in yet another brain area, 
the ventral putamen, was 
correlated with the 
decision-value of a 
classically described 
lottery (figure 23.5b).

In summary, since Allais 
(1953), converging 
evidence at the behavioral 
level suggests that humans 
distort information about 
probability in decision 
under risk in a highly 
characteristic manner. 
That is, people tend to 
overweight small 

probabilities and underweight moderate-to-large ones. However, such a pattern of 
distortion has been found primarily in situations where information about outcomes and 
their associated probabilities of occurrence are described explicitly in numerical or 
graphical form to the subjects. This line of results was recently challenged, however, by 
two other lines of research. The first pointed out the description-experience gap in 
decision making and found that the pattern of distortion was markedly different in 
situations where people acquired information about probability by sampling experience 
(Barron and Erev 2003; Hertwig et al. 2004; Jessup et al. 2008; Ungemach et al. 2009). 
The second challenge came from research about perception and action suggesting that 
people are near-optimal EUT maximizers in perceptual and motor tasks that are formally 
equivalent to decision making under risk (Geisler 1989; Trommershäuser et al. 2003b,a; 

Click to view larger

Figure 23.5  Comparisons of neural correlates of 
different sources of probability in described and in 
experienced lottery tasks. (A) Neural correlates of 
probability weight in classical (described) lottery 
tasks (red) and in motor lottery task (green); mPFC: 
medial prefrontal cortex. (B)Neural correlates of 
subjective value (estimated probability of reward) in 
classical (described) lottery tasks (red) and in 
experienced or learned lottery tasks (blue); vmPFC: 
ventromedial prefrontal cortex; PCC: posterior 
cingulate cortex; VP: ventral putamen. Adapted from 
Wu et al. (2011) and FitzGerald et al. (2010).

(p. 707) 
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Körding and Wolpert 2004; Najemnik and Geisler 2005; Tassinari et al. 2006; Battaglia 
and Schrater 2007; Dean et al. 2007). A direct comparison of the classical descriptive 
lottery tasks against mathematically equivalent motor lottery tasks (Wu et al. 2009) 
suggested that, similar to the findings in the description-experience gap, people tend to 
underweight small probabilities and overweight large probabilities in motor tasks. 
Together, these results pointed out that in more naturalistic settings where probability 
information has to be inferred, either from experience or from knowledge about the 
environment or the nervous system, the way such information is distorted is markedly 
different from descriptive scenarios. Neuroimaging studies have just begun to address 
these phenomena observed in behavior by investigating the underlying neural correlates 
of probability distortion. We believe that the ultimate success or failure of the 
contribution of neuroeconomics to understanding probability representations would 
depend on identifying the algorithms involved in probability distortion at the neural level 
and how their neural implementations would tie to current understanding about reward 
learning systems, particularly the midbrain dopamine system.

In addition, fundamental questions such as how the reference-dependent utility of a 
reward is integrated with probability weight at the time of choice and the computational 
algorithm for such integration also need to be addressed. In doing so it is important to 
first separately examine the neural systems involved in computing the reference-
dependent utility and probability, in either choice or nonchoice situations. Once the 
neural representations in these domains have been established, one can then create a 
decision task that independently manipulates rewards and probability. This will then 
allow for the possibility of investigating the integration computations and will allow for an 
assessment of how neural systems involved in either kind of computation 

(reference-dependent utility or probability weight) contribute to the systems that 
represent the integrated products.

23.5 Concluding Remarks
Since Samulson (1938), neoclassical economics has largely relied on revealed-preference 
theory in conducting economic analysis. What is central in this approach is that the 
relation between internal representations of subjective value and choice behavior is 
established on the basis of axioms about revealed preference. We began the chapter by 
arguing that subjective value is represented by neuronal activity in units of action 
potential and that choosers behave as they do because, not as if, there is an internally 
consistent cardinal representation of subjective value. Armed with this assumption, 
neuroeconomists have accumulated a wealth of neurobiological evidence related to 
decision computations. As a result of this rapid accumulation of findings, a standard 
neurobiological model emerged. This emerging model proposed that the neurobiological 
mechanisms of decision making could be subdivided into two components, valuation and 
choice. Valuation refers to computing subjective value for each option available in a 
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choice set. The network involved in this component includes the dopamine neurons in the 
midbrain, the medial prefrontal cortex, the orbitofrontal cortex, and the striatum. We 
reviewed evidence suggesting SV computation and algorithms for learning and 
representing SV in the valuation circuitry. The second component, referred to as choice, 
is involved in integrating SV computed in the valuation circuitry so as to compute relative 
subjective value associated with different options. TheRSV serves to guide action 
planning for the animal to obtain the desired option. In the framework of saccadic 
decision making, the choice network involves the lateral intraparietal area, the frontal 
eye field, and the superior colliculus. To summarize, this emerging model placed a 
particular emphasis on identifying algorithms involved in decision-related computations 
at different stages and their implementations at the system level.

As part of an attempt to expand the model at both the algorithmic and the neural-
implementation levels, we identified two novel future directions for value computations 
raised by economic theorists and psychologists. The first direction was related to the 
notion of the reference point. Different models in economics and psychology for how to 
formally model reference points have been proposed. Themodels in essence provided 
precise algorithms for reference-dependent value computations that could be tested and 
compared at the neural level. The theoretical notion of reference point proposed by 

Koszegi and Rabin (2006) drew particular attention to neurobiologists. In their view, the 
reference point is the rational belief, represented by probability distribution over possible 
outcomes, established by experience from the recent past. This is closely related to what 
neurobiologists found in midbrain dopamine neurons in reward learning tasks, and 
several laboratories have begun to investigate the algorithmic form of reference-
dependent computations in the valuation network.

The second direction was related to different sources of probability information 
and how they might differentially affect choice in decision under risk. Classical results 
indicated that humans tend to distort probability information, but these results tended to 
be replicated in situations where information about probability was explicitly revealed to 
the chooser. More recently, accumulating evidence suggests that the way probability 
information is distorted is different from descriptive scenarios in motor decisions and in 
scenarios where knowledge of probability was acquired via sampling experience. 
However, the neural correlates associated with different sources of probability 
information and the precise neural mechanisms responsible for differences in probability 
distortion remain largely unknown and are under investigation. We believe that the 
differences lie in the systems representing probability information and the algorithms 
they are capable of in computing probability information. Hence, the key contribution 
that neuroeconomics could possibly make to this field would be to identify the systems 
involved in representing different sources of probability information and the potential 
differences in the algorithms implemented in those systems.
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Notes:

( ) A brief introduction to two principal techniques often used to measure activity in the 
brain and the signals they measure is in order here. (A) “Single-neuron recording” 
measures activity from a single neuron by placing a tiny electrical probe very near to a 
targeted neuron. This technique measures the electrochemical state of a single neuron. 
Because the probe must be inserted into the brain, however, the technique cannot be 
applied to humans except in rare surgical environments. (B) Functional magnetic 
resonance imaging typically measures a physicochemical signal called the “blood-oxygen-
level-dependent (BOLD) response” using an MRI scanner. The BOLD signal reflects 
changes in blood flow, blood volume, and blood oxygenation caused by changes in the 
metabolic demands neurons. Because changes in metabolic demand closely parallel the 
electrochemical states of nearby neurons, the BOLD signal is an indirect measure of 
neuronal activity. This measurement technique is entirely noninvasive and thus has 
revolutionalized the study of brain and behavior in humans. However, the precise 
mapping between neural activity and the BOLD signal has not yet been specified with 
complete accuracy. To a first approximation, fMRI yields a measurement that is a linear 
transform of mean action potential rates across a population of nerve cells over a spatial 
extent of several millimeters and over a period of several seconds (Heeger and Ress 
2002). We caution, however, that the precise mapping of the fMRI signal to underlying 
activity is a subject of intense current scrutiny. There is no significant doubt that this 
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signal is monotonic with mean action potential rates, but it may well be that it maps more 
linearly to aggregate membrane depolarization than to the action potential rates derived 
physically from this quantity. See Logothetis et al. (2001); Heeger and Ress (2002); 
Logothetis (2008) for more about this issue.

( ) We note that, during training, hitting the screen after the 0.7-second time limit 
resulted in a monetary loss five times greater than the gain. This manipulation served to 
train the subjects to response within 0.7 seconds. In practice, the probability of this 
occurring in a trained subject is negligible.
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