
The Functional Roles of the Amygdala and Prefrontal
Cortex in Processing Uncertainty

Oriel FeldmanHall1, Paul Glimcher2, Augustus L. Baker2,
NYU PROSPEC Collaboration*, and Elizabeth A. Phelps2,3

Abstract

■ Decisions under uncertainty distinguish between those made
under risk (known probabilities) and those made under am-
biguity (unknown probabilities). Despite widespread interest in
decisions under uncertainty and the successful documentation
that these distinct psychological constructs profoundly—and
differentially—impact behavior, research has not been able to
systematically converge on which brain regions are functionally
involved in processing risk and ambiguity. We merge a lesion
approach with computational modeling and simultaneous
measurement of the arousal response to investigate the impact

the medial prefrontal cortex (mPFC), lateral prefrontal cortex
(lPFC), and amygdala have on decisions under uncertainty.
Results reveal that the lPFC acts as a unitary system for processing
uncertainty: Lesions to this region disrupted the relationship be-
tween arousal and choice, broadly increasing both risk and ambi-
guity seeking. In contrast, the mPFC and amygdala appeared to
play no role in processing risk, and the mPFC only had a tenuous
relationship with ambiguous uncertainty. Together, these find-
ings reveal that only the lPFC plays a global role in processing
the highly aversive nature of uncertainty. ■

INTRODUCTION

Choosing which route to take to work, entrée to select
on the menu, or friend to entrust with a secret are all de-
cisions made under uncertainty. These decisions, which
are part and parcel of everyday human life, can be char-
acterized as either those made under risk (known prob-
abilities) or those made under ambiguity (unknown
probabilities; Knight, 1921). The distinction between
these two types of uncertainty illustrates that humans have
a strong aversion to ambiguous uncertainty compared with
risky uncertainty—even when risky and ambiguous deci-
sions share the same probabilistic outcomes (Ellsberg,
1961). Recent work exploring the underlying mecha-
nisms motivating aversion to ambiguity found that affect,
indexed through arousal, appears to play a fundamental,
and perhaps specific, role in biasing the representation
of value under ambiguity (FeldmanHall, Glimcher, Baker,
& Phelps, 2016). Evidence from the imaging literature
corroborates this, demonstrating that neural systems
intimately linked with processing affect and arousal are
critically involved when humans make decisions under
uncertainty (Levy, Snell, Nelson, Rustichini, & Glimcher,
2010; Huettel, Stowe, Gordon, Warner, & Platt, 2006;
Critchley, Mathias, & Dolan, 2001). However, despite

the active and interdisciplinary nature of this research
topic, there is little consensus about which brain regions
are essential for processing decisions of risk versus those
made under ambiguity. Accordingly, precisely quantifying
the role of affect, and identifying the associated neural
regions necessary when making decisions under uncer-
tainty, has remained elusive. To do this, we leverage com-
putational models with physiological methodologies in
patients with brain lesions to test the causal and putatively
selective role affect plays in processing and biasing deci-
sions under ambiguity, compared with those under risk.
The past two decades have been very productive in

identifying the network of brain regions involved in pro-
cessing uncertainty. Early work found that lesions to the
medial prefrontal cortex (mPFC) appeared to have a pro-
found impact on detecting uncertainty, which hindered
adaptive decision-making (Bechara, 2004; Bechara,
Damasio, & Damasio, 2000). This research was seminal
in demonstrating how key brain regions involved in
affect—indexed through the body’s arousal response—
are necessary for successfully responding to uncertainty.
This work, however, failed to differentiate between the
psychological constructs of risk and ambiguity, leaving
the specific role of the mPFC and putative engagement
of the affective system in guiding such decisions unclear.
In contrast, subsequent studies employing imaging
methods and formal decision models have successfully
differentiated decisions of risk from ambiguity, finding
increased BOLD activation in a suite of brain regions, in-
cluding the mPFC (and OFC), amygdala, lateral prefrontal
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cortex (lPFC), and cingulate (Levy et al., 2010; Huettel
et al., 2006; Critchley et al., 2001).
Despite the behavioral evidence that these are likely

distinct psychological constructs (Tymula, Rosenberg
Belmaker, Ruderman, Glimcher, & Levy, 2013), the liter-
ature has not been able to systematically converge on
which brain regions are necessary for processing risk
compared with ambiguity, and vice versa. For example,
some work exclusively examining risk found a key role
for the OFC, cingulate, and lPFC in modulating risky
choices (Levy et al., 2010; Critchley et al., 2001), whereas
a later study reported a different pattern of results, ob-
serving that risky decisions engaged the caudate, while
ambiguous decisions more consistently elicited BOLD
activity in the OFC and amygdala (Levy et al., 2010;
Hsu, Bhatt, Adolphs, Tranel, & Camerer, 2005). A flurry
of work across many laboratories followed suit, revealing
more inconsistent evidence about whether the OFC and
amygdala are more involved in decisions under ambiguity
compared with risk and whether regions such as the lPFC
are more integral for processing risk relative to ambi-
guity. This inconsistent evidence is often leveraged to
support two competing theoretical accounts: a dissocia-
ble neural system where different neural networks index
risk and ambiguity (Krain, Wilson, Arbuckle, Castellanos,
& Milham, 2006) and a common neural system sup-
porting both types of uncertainty (Hsu et al., 2005).
More than a decade later, there is little resolution.

Although the vast majority of research has employed
imaging methods to investigate the neural mechanisms
supporting risk and ambiguity, the brain’s BOLD signal
cannot capture causal relationships, leaving the necessity
of specific brain regions in question. The one instance in
which a lesion method was used also paints a conflicting
story: Hsu and colleagues found that ambiguous (com-
pared with risky) decisions correlated with increased
BOLD activity in the lateral OFC (Hsu et al., 2005).
However, when examining a small sample of patients
with damage to this region, the authors reported im-
paired behavioral patterns for both risky and ambiguous
choices. Given the contradictory evidence on all levels,
pressing questions remain. Does a unified integrated
neural network process both types of uncertainty, or
are there two separate and dissociable systems for pro-
cessing risk and ambiguity? If there are indeed two sys-
tems, is there a quantifiably unique affective signal that
is sensitive to the more aversive nature of decisions made
under ambiguity compared with those made under risk?

We merge a lesion approach with computational model-
ing to investigate the relationships between brain regions
and their impact on decisions of risk and ambiguity. By
documenting how specific brain lesions relate to observ-
able behavioral deficits, we can gain a deeper under-
standing of the contributions for many of the brain areas
implicated in processing decisions of uncertainty. Ac-
cordingly, using a well-vetted gambling task (Figure 1)

Figure 1. Experimental design.
Participants completed a
standard computerized lottery
task where each lottery
depicted a stack of 100 red and
blue poker chips that
corresponded to actual payout
bags in the testing laboratory.
On each trial, participants could
choose between receiving $5
for sure versus taking a gamble.
(A) An example of a risky trial
that contained 50/50 odds of
winning $50 (i.e., 50% risky
gamble). (B) An example of an
ambiguous trial where 50% of
the chips are occluded (i.e.,
50% ambiguity). In this case, the
participant could gamble for
$20 or take the sure $5. (C)
Risky trials were always
presented as 25% (high risk),
50%, or 75% (low risk)
probability of winning. During
ambiguity trials, the
probabilities were occluded to
varying degrees (three levels
were used) ranging from 24% to
74%. The monetary wins were
always counterbalanced between red and blue chips and were matched across risky and ambiguous trials. (D) Each trial consisted of a fixed
lottery presentation for 6 sec. Once a green dot appeared, the participant could key in their response to indicate playing the lottery or taking the safe
bet. SCR was recorded for 10 sec starting 0.5 sec after the lottery presentation onset.

FeldmanHall et al. 1743



known to dissociate risk and ambiguity (Grubb, Tymula,
Gilaie-Dotan, Glimcher, & Levy, 2016; Tymula et al.,
2012, 2013; Levy et al., 2010), we implemented a formal
model that captures individuals’ risk and ambiguity atti-
tudes (Gilboa & Schmeidler, 1989) to interrogate the role
of the mPFC, lPFC, and amygdala and their relative contri-
butions to risk and ambiguity intolerance. This is done
while simultaneously measuring skin conductance re-
sponses (SCRs), which allows us to collect converging ev-
idence on the specific effects of whether the integration of
arousal during the decision process is impaired. Taken to-
gether, this approach permits a systematic investigation of
whether specific brain regions systematically bias the
computation of value of choice depending on whether
the decision was purely risky or ambiguous.

METHODS

Participants

Healthy Controls

We recruited 44 healthy controls (HCs), matched in age,
gender, and education to our patient group (see below).
Sample size was determined from past work using the
same task (FeldmanHall et al., 2016). Four participants
were not included in the analysis for the following rea-
sons: One participant was excluded for failing to under-
stand the task during debriefing and because his or her
SCR and behavioral data were subsequently never scored,
and an additional three participants were not included
because of technical difficulties or for failing to exhibit
any SCR during the initial test phase, which required par-
ticipants to hold their breath (see section on SCR for
more details). The final sample, which was recruited from
the New York University Patient Registry for the Study of
Perception, Emotion and Cognition, included 40 partici-
pants (23 women; mean age = 33.5 years, SD = 11.5).

Patients

Thirty-three patients with brain lesions because of stroke,
tumor resection, head injury, and surgery for epilepsy
(Table 1) were recruited from the Patient Registry for
the Study of Perception, Emotion and Cognition (15
women; mean age = 40.2 years, SD = 11.1). Using
MRIcron and FSLView software, lesion masks for each pa-
tient were created by a clinical neuropsychologist before
data collection, which allowed us to classify patients into
different lesion groups reflecting the primary location of
the lesion, resulting in the final grouping: lPFC patients,
n = 8; mPFC patients, n = 9; and medial temporal lobe
(MTL; where the maximum overlap was in the amygdala)
patients, n = 16. The clinical neuropsychologist also car-
ried out a clinical interview and a comprehensive neuro-
psychological examination to evaluate cognitive abilities
and current social functioning before data collection.
Each patient’s medical records and high-resolution T1

magnetization prepared rapid gradient echo (MP-RAGE)
scans were evaluated and used to determine if there was
evidence of diffuse atrophy. If there was, patients were
excluded from recruitment. Evidence of (1) global cognitive
dysfunction on a standard measure of intelligence
(Wechsler Adult Intelligence Scale–Fourth Edition: index
scores below the standard score of 70; Wechsler, Coalson,
& Raiford, 2008), (2) a history of developmental/learning
disorders, (3) intellectual disability (full-scale IQ < stan-
dard score of 70), (4) severe psychiatric illness, or (5)
complicating neurologic conditions other than those
related to the brain lesions were also used to exclude
patients during recruitment (Table 2).

Creation of Lesion Masks

Postsurgical scans were obtained using 1.5- or 3-T
Siemens full-body MR scanners from the NYU Radiology
Department. Image acquisitions included a conventional
three-plane localizer and two T1-weighted gradient-echo
sequence volumes. High-resolution T1 MP-RAGE se-
quences from each patient were normalized to Montreal
Neurological Institute standard space. Using MRIcron, a
mask was drawn over the lesion and any craniotomy defect,
where masked voxels were assigned a weight of 0, elsewise
1—indicating the presence of intact tissue. Two frontal
patients had bilateral damage. In a few cases, the damage
was highly extensive (such that seven to eight Brodmann’s
areas were, at least in part, damaged), which resulted in
large swaths of the frontal region being removed. How-
ever, for most of the frontal patients, the lesions were more
constrained such that only a few Brodmann’s areas were
affected. All MTL patients had unilateral lesions, and many
had damage to both the amygdala and hippocampal struc-
tures. In most cases, the damage encompassed the anterior
hippocampus; however, the posterior hippocampus was
preserved. In very few patients was the entire hippocampus
lesioned. About a third of the MTL patients also had some
damage to the anterior temporal pole.
In the rare circumstances when we were unable to ob-

tain a postoperative T1 MP-RAGE (one patient was highly
claustrophobic), we used the patient’s preoperative MRI
to determine the tumor location and estimate the loca-
tion of the postoperative lesion. The clinical neuropsy-
chologist, in conjunction with a trained MRI physicist at
the NYU Center for Brain Imaging, then reconstructed a
patient’s T1 MRI scan on a 3-T Siemens Allegra head-only
MR scanner.

Creation of ROI Masks

ROI masks were constructed with MarsBar toolbox
(Brett, Anton, Valabregue, & Poline, 2002) by combining
corresponding structures from the Harvard-Oxford
Maximum Probability Atlases (Fischl et al., 2004). Our
two ROIs localized to the PFC consisted of the mPFC
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Table 1. Lesion Descriptions

Patient Group Lesion Location Etiology Handedness
Lesion Volume

(Percent Damage)

3 MTL R Medial temporal sclerosis, epilepsy R 3.12

5 MTL L Medial temporal sclerosis, epilepsy R 3.99

10 MTL R Dysembryoplastic neuroepithelial
tumor in anterior mesial temporal lobe

L 2.80

14 MTL L Medial temporal sclerosis, epilepsy R 1.63

27 MTL R Epilepsy R 2.32

31 MTL R Epilepsy R 2.05

53 MTL L Epilepsy R 3.87

56 MTL R Epilepsy R 5.03

58 MTL R Epilepsy R 3.91

80 MTL R Epilepsy R 3.02

83 MTL L Epilepsy R 1.77

99 MTL L Epilepsy R 2.07

153 MTL R Epilepsy R 4.61

178 MTL L Epilepsy L 2.60

182 MTL L Epilepsy R 1.81

184 MTL L Epilepsy R 2.51

41 lPFC L Glial tumor R 2.12

45 lPFC L Epilepsy and hemorrhage L Not available

52 lPFC L Oligodendroglioma (low-grade) R 1.78

81 lPFC R Low-grade glioma R 4.52

95 lPFC Bilateral Meningioma R 5.69

100 lPFC R Focal cortical dysplasia R 5.88

105 lPFC L Cavernoma R 0.10

108 lPFC L Hamartoma with balloon cells R 1.15

34 mPFC L Oligodendroglioma and epilepsy R 5.01

35 mPFC L Oligodendroglioma (low-grade) R 1.46

36 mPFC L Neoplasm (glioma) R 3.54

46 mPFC R Epilepsy R 9.20

122 mPFC L Epilepsy R 7.96

123 mPFC L Cavernous angioma resection R Not available

133 mPFC R Malformation of cortical development
in inferior frontal lobe and frontal
basal cavernoma

R 2.56

156 mPFC R Glioma surrounding right eye orbit R Not available

186 mPFC Bilateral Traumatic brain injury Mixed (R > L) 6.72

Lesion volume is indexed by the percentage of damaged voxels across the whole-brain mask. L = left; R = right.
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and lPFC (see Supplementary Material1 for images of the
ROIs; Figure S6). The mPFC ROI consisted of the frontal
pole, frontal medial cortex, paracingulate gyrus, and
subcallosal cortex and was constrained by rectangular
prism x = [−14, 14], y = [10, 80], z = [−35, 0]. The
lPFC ROI consisted of the inferior frontal gyrus and mid-
dle frontal gyrus and was constrained by bilateral rectan-
gular prism x = [−60, −30 (L); 30, 60 (R)], y = [20, 70],
z = [5, 55]. Five participants had damage to both lPFC
and mPFC, but in each case, patients had more damage
to either the lPFC (n = 3) or the mPFC (n = 2), using
the parameters defined by the ROI mask (see Table 1).
Finally, amygdala ROIs were created using the Harvard-
Oxford Subcortical Atlas thresholded at 25% probability.

ROI Analysis

To determine the extent of damage and its relative con-
tribution to risk and ambiguity preferences, we first esti-
mated the proportion of each individual’s damage within
each ROI mask. For example, a patient with damage to
10% of the lPFC mask would receive a value of 0.10.
Some patients, especially those with frontal damage, ex-
hibited damage to both the medial and lateral portions of
PFC (two in total). In these cases, patients with greater
damage in one ROI (e.g., 33% damage to the mPFC
and 10% damage to the lPFC) were categorized according
to the ROI with the greatest damage. These percentages

were used as independent variables at the participant
level in linear regressions (Tables 3 and 4).

Task

To characterize the relevant engagement of the brain re-
gions known to be involved in processing affect, as well
as the possible role of arousal in guiding risky and ambig-
uous decisions, participants performed a well-vetted task
(FeldmanHall et al., 2016; Grubb et al., 2016; Tymula
et al., 2012; Levy et al., 2010) composed of gambles with
known probabilities (risky trials, Figure 1A) and unknown
probabilities (ambiguous trials, Figure 1B). On each of
the 62 trials, participants had the option to choose the
safe option with a sure payout of $5 or to take the gamble
(payouts between $5 and $125), where each gamble had
varying degrees of monetary value, and risk or ambiguity
(Figure 1C). Each lottery was either risky or ambiguous,
allowing us to assess an individual’s sensitivity to known
risk and unknown ambiguous monetary choices. The pa-
rameters of the lottery were varied in random order, such
that the magnitude of the potential win (money) and the
probability of winning (risk and ambiguity levels) could
independently influence participants’ choices. Figure 1A
depicts a risky trial where a participant could choose be-
tween $5 for sure (available on every trial) or a lottery
with a 50% chance of winning $50 or nothing ($0). All
lotteries are presented by a bag composed of blue and

Table 3. Model-Free Results: Effect of Brain Damage on Risky Gambles: All Patient Groups

Dependent Variable Coefficient (β) β Estimate (SE) t Value p Value

Risky Choice

Intercept 0.08 (0.06) −1.29 .19

mPFC percent damage −0.38 (0.98) −0.39 .69

lPFC percent damage 3.0 (1.3) 2.2 .02*

Amygdala percent damage 0.75 (0.63) 1.19 .23

Total percent damage −8.18 (6.0) −1.36 .17

Risky Choicesi,t = β0 + β1 mPFC Percent Damagei + β2 lPFC Percent Damagei + β3 Amygdala Percent Damagei + β4 Total Percent Damagei. Where
Choice is indexed by participant and trial and Percent Damage is indexed by participant and accounts for the number of voxels damaged in each ROI
(see methods for ROI creation).

*p < .05.

Table 2. Group Demographics

Group Sex Age (SD) Years of Education FSIQ VCI PRI WMI PSI

mPFC 4 female 41.7 (12.4) 16.3 104.3 108.9 104.4 97.6 99.8

lPFC 1 female 41.5 (15.1) 13.9 101.9 110.0 98.9 100.9 94.0

Amygdala 10 female 37.6 (8.4) 15.7 105.9 106.6 103.9 104.6 104.2

Neuropsychological scores of patients after resection for the Wechsler Adult Intelligence Scale: full-scale IQ (FSIQ), verbal comprehension index
(VCI), perceptual reasoning index (PRI), working memory index (WMI), and processing speed index (PSI).
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red chips. In this particular case, there are 50 blue chips
and 50 red chips and the winning amount happens to be
associated with the red chips. Thus, if the participant
draws a red chip, he or she wins the lottery. For these
risky trials, outcome probabilities were fully stated with
varying winning probabilities of 25%, 50%, and 75%.
During ambiguous trials, the probabilities were oc-

cluded to varying degrees. For example, participants
could face either a sure payout of $5 or a lottery paying
$20 (associated, e.g., with the red chips) or $0 (associ-
ated with the blue chips), with a gray occluder covering
50% of the poker chips (50% ambiguity). Thus, the par-
ticipant knows there are at least 25 red and 25 blue chips,
but the remaining 50 can be any combination of red and
blue. Depending on the participant’s ambiguity intoler-
ance, one could perceive the odds of winning $20 to
be anywhere from 24% to 74%. Occluder size ranged
from 24% (low ambiguity) to 50% (medium ambiguity)
to 74% (high ambiguity), where increasing occluder size
reduces information about the contents of the bag, rais-
ing the level of ambiguity (Figure 1C). The lotteries for
both types of risk corresponded to actual bags filled with
red and blue chips placed in the testing laboratory and
that were used to pay participants. For each participant,
color associated with winning the monetary reward was
counterbalanced, as was the side the lottery option was
presented. Although aversion to uncertainty is greater in
the loss than gain domain, our prior work illustrates that,
regardless of the domain, these are stable preferences
that are consistently held over time; thus, we only exam-
ined risk and ambiguity within the gain domain (Tymula
et al., 2013).
Lotteries were presented for a fixed 6 sec, at which

time a green button appeared cuing the participant to
key in their response. Participants had up to 3.5 sec to
make a response. Once a response was recorded, partic-
ipants viewed a schematic of which button they pressed,
providing visual feedback of the choice they made (pre-
sented for 1 sec). The intertrial interval was a fixation

cross presented for a jittered 4–6 sec, which allowed us
to effectively measure trial-by-trial SCRs.

Payment

Past research, including work from our own laboratory,
indicates that people behave differently when their
choices are hypothetical (FeldmanHall et al., 2012; Holt
& Laury, 2002). Accordingly, participants’ choices were
consequential, with one trial randomly selected for pay-
out. Thus, all participants understood that their decision
on that trial would result in real monetary consequence.
To pay out the participants, experimenters created a
number of paper bags with lottery images that corre-
sponded to those used in the task. The bags were filled
with a number of blue and red poker chips proportional
to the outcome probability stated by the lottery display.
After completion of the task, each participant drew a
numbered poker chip from a separate paper bag to select
a random trial for payment. If on the selected trial the
participant chose to gamble, the lottery depicted in the
trial was played by drawing a chip from the correspond-
ing paper bag. If the participant drew a chip correspond-
ing with winning the lottery, they received a bonus
payment equal to the value of the gamble (between $5
and $125); if they drew a losing chip, they were not able
to make additional money and were compensated $15
for participating in the study. If on the selected trial the
participant chose the sure outcome, they received an
additional $5 in compensation.

To ensure that participants understood the task and
payout structure, at the end of the computer-presented
instructions and before the 10 practice trials, the experi-
menter always said: “So I want to explain how payment
works. As you can see, we have multiple bags lined up.
Each bag has a picture that matches each lottery image
used in the experiment. The outcome probabilities are
stated here (point to bags). In other words, these pic-
tures of the probabilities correspond to the options you

Table 4. Model-Free Results: Effect of Brain Damage on Ambiguous Gambles—All Patient Groups

Dependent Variable Coefficient (β) β Estimate (SE) t Value p Value

Ambiguous Choice

Intercept −0.17 (0.10) −1.44 .15

mPFC percent damage 1.02 (1.51) 0.67 .49

lPFC percent damage 3.58 (1.85) 1.93 .054*

Amygdala percent damage 0.87 (1.07) 0.81 .41

Total percent damage −16.3 (10.37) −1.56 .11

Ambiguous Choicesi,t = β0 + β1 mPFC Percent Damagei + β2 lPFC Percent Damagei + β3 Amygdala Percent Damagei + β4 Total Percent Damagei.
Where Choice is indexed by participant and trial and Percent Damage is indexed by participant and accounts for the number of voxels damaged in
each ROI (see methods for ROI creation).

*p < .1.

FeldmanHall et al. 1747



will see during the experiment. Please make sure you un-
derstand this, as we will use these bags later to pay you
out for one randomly selected lottery. To reiterate, you
will be paid out based on your choices, and these bags
will be used later to play randomly chosen trials for
payoff. After the experiment, you will be allowed to look
inside the bags to see that they match the stated proba-
bility or ambiguity level pictured here.”

SCR Collection

To measure the body’s arousal response, SCR was recorded
while participants viewed the lottery and made their deci-
sion (10-sec window, Figure 1D). Because raw SCRs were
positively skewed, participants’ SCRs were normalized by
taking the square root of each base-to-peak score. Partici-
pants performed the task in an experiment room equipped
with an MP-150 BIOPAC system used to record SCRs. Before
the task, participants read through the instructions and prac-
ticed the task for 10 trials. The experimenter then attached
the BIOPAC sensors to participants’ left palm and instructed
them to keep their arm as still as possible for the duration of
the study to collect SCRs. The experimenter always per-
formed two tests to ensure that SCR responses could be
collected. After allowing a baseline SCR to develop, the ex-
perimenter instructed the participants to take a deep breath
and hold it for 3 sec to determine if adequate SCRs could be
produced. For the second test, the experimenter asked par-
ticipants to purse their lips and blow air as if they were in-
flating a balloon, but without releasing their breath. If one or
both tests produced an adequate SCR response, the exper-
imenter continued with the experiment; otherwise, the par-
ticipant was compensated $15 and dismissed without
completing the task. The experimenter remained in the
room with the participants for the duration of the study to
monitor their SCR recording and to transition them from
Blocks 1 to 2 of the task.

SCRs were recorded and analyzed using AcqKnowledge
(Version 3.7.3, BIOPAC Systems Inc.). The data were col-
lected at 200 samples per second using a low-pass digital
filter with a 25-Hz cutoff frequency and a smoothing factor
of 10 samples. SCRs were considered related to the choice
if the base-to-peak response (i.e., SCRmax − SCRmin) was
within the established window of 0.5 sec after the onset
of the stimulus to 0.5 sec after the offset of the stimulus
(10.5 sec in total; see Figure 1D). Responses starting be-
fore 0.5 sec after the onset are unable to be considered
elicited by the stimulus and were thus not analyzed
(Dawson, Schell, & Filion, 2007).

Threshold response criterion was set at 0.02 μV or
greater, and responses that failed to meet this criterion
were scored as 0 (Dawson et al., 2007). Because raw
SCRs follow a skewed distribution, SCRs were normalized
by taking the square root of each score as commonly
done in studies that measure electrodermal activity
(Dawson et al., 2007), which allows for SCR data to be
analyzed using parametric tests. For analyses that required

SCRs to be compared between HCs and lesion popula-
tions, we transformed SCRs first into z scores and then into
t scores by using the mean and standard deviation of each
group (Braithwaite & Watson, 2015). The advantage of this
approach is that it allows a direct comparison between
groups, without relying on the assumption about maxi-
mum SCR responding (Boucsein, 1992).

Modeling of Risk and Ambiguity Attitudes

The gambling task we employed allows us to explicitly
explore the relationship between affective arousal and
gambling rates by modeling the subjective value of risk
and ambiguity for each option under consideration and
the amount of money that can be gained. In our past
work, we found that Gilboa and Schmeidler’s maxmin ex-
pected utility model provides a simple and useful model
anchoring parameters for best- and worst-case scenarios
(Gilboa & Schmeidler, 1989), where one parameter indi-
cates risk sensitivity (α) and the second parameter indi-
cates ambiguity sensitivity (β). This utility function takes
into account the effect of ambiguity on perceived win-
ning probability:

SV p;A; νð Þ ¼ p−β *
A
2

� �
* νa

where, for each trial, subjective value is calculated as a
function of the lottery’s objective winning probability
( p), level of ambiguity (A), and monetary value (ν), ac-
counting for each individual’s risk (α) and ambiguity
(β) attitudes, which are obtained from the behavioral
fit of the model (see below). An α > 1 indicates that a
person is risk seeking and thus more likely to gamble
on risky trials, whereas an α < 1 indicates that a person
is risk averse and less likely to gamble on risky trials (α =
1 indicates a risk-neutral individual). A β > 0 indicates
that a person is ambiguity averse and thus less likely to
gamble on ambiguous trials, whereas a β < 0 indicates
that a person is ambiguity seeking and thus more likely
to gamble during ambiguous lotteries. These estimates
have opposite polarities, reflecting participants’ attitudes
toward risk and ambiguity based on their decisions dur-
ing the task. Classically used by Holt and Laury (2002), as
well as in prior work from our laboratory (FeldmanHall
et al., 2016; Levy et al., 2010), these attitudes were de-
rived by fitting choice data using the maximum likelihood
with the following probabilistic choice function:

P choose lotteryð Þ ¼ 1
1þ eγ SVF−SVVð Þ

where SVF and SVV are the subjective values of the fixed
and variable options, respectively, and γ is the slope of
the logistic function, which is a participant-specific pa-
rameter. This utility function captures the relative value
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a participant places on ambiguous versus risky lotteries,
allowing us to decompose the subjective value of each lot-
tery and explore its discrete relationship with the arousal
response. All analyses and results employing the model-
based approach can be found in the supplement.

Model-Free Approach

We also examined the impact of brain damage on choice
by looking at raw decisions to gamble or take the safe
bet. To do this, we employed a trial-by-trial hierarchal
regression framework. For example, to examine the
lesion–gambling relationship, we modeled the binary
choice to gamble or take the safe option as a function
of the amount of damage to each lPFC, mPFC, and amyg-
dala ROIs, while also controlling for overall damage. We
also used a similar approach to explore the arousal–
gambling relationship; we modeled the binary choice to
gamble or take the safe option as a function of SCR under
each type of uncertainty—for each level of risk and am-
biguity. For these regressions, we used the fitglme func-
tion in MATLAB, such that the decision data were
modeled with a binomial distribution and a Logit link
function. We report maximal models (random and fixed
effects are included in regressions) for all analyses (Barr,
Levy, Scheepers, & Tily, 2013).

RESULTS

Choices Under Uncertainty

To examine how lesions to the lPFC, mPFC, and amygdala
might affect decisions under uncertainty, we took the

number of trials on which a participant selected the risky
or ambiguous lottery and used this as an index of their
willingness to engage in risky or ambiguous decision-
making. We ran a hierarchal logistic regression, inter-
rogating choice (rates of selecting risky and ambiguous
lotteries) as a function of the extent of damage to a given
ROI (i.e., the number of voxels damaged in each patient
within a given ROI mask). One advantage of this approach
is that not only is the raw gambling rate of each participant
accounted for, but the regression additionally accounts
for the percent damage to predetermined ROIs. For an
alternative approach that uses a parametric model-based
approach (i.e., Gilboa and Schmeidler’s maxmin utility
model), see supplement.

We first explored choices under risk, investigating how
the amount of damage to the lPFC, mPFC, and amygdala
within the ROIs impacted decisions to gamble. Controlling
for overall brain damage, we found that the extent of
damage to the lPFC had a pronounced and unique influ-
ence on how readily gambles are taken under risk: The
greater the damage, the more gambles taken (Table 3,
Figure 2A; which was also confirmed with our model-
based analysis, Figure S5). We observed no relationship
between the amount of damage to the mPFC or amygdala
and risky decisions to gamble (Table 3). During ambigu-
ous uncertainty, we observed a similar pattern. Whereas
there was no effect of damage to the mPFC or amygdala
on willingness to gamble, the more the damage to the
lPFC, the more biased an individual was toward taking
the gamble (Table 4, Figure 2B; a comparison with the
model-based approach revealed inconsistencies, however:
see supplement, Figure S5). These findings reveal that
patients with lesions to the lPFC exhibit a more global

Figure 2. Gambling under risk and ambiguity as a function of lesion group. (A) Gambles under risk. Greater damage to the lPFC resulted in a
significant increase in taking risky gambles; there was no relationship between risky gambling and damage to the mPFC or amygdala. (B) Gambles
under ambiguity. A similar pattern emerged for decisions made under ambiguity. Error bars reflect 1 SEM.
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increase in their tolerance for making both risky and am-
biguous decisions (Figure 2).

HCs: Choice and the Relationship with Arousal

Before investigating the gambling–arousal relationship in
our patient groups, it is necessary to ensure that our HCs
exhibited a relationship between gambling and arousal
levels consistent with previous research (FeldmanHall
et al., 2016). Accordingly, just as we have done in prior
work, we modeled the binary choice to gamble or take
the safe option as a function of SCR under each type of
uncertainty—for each level of risk and ambiguity. As with
our prior work, within the risk domain, results reveal that
increasing physiological arousal predicts a greater likeli-
hood of taking the safe option only when the trials are
very risky (high risk: β = −1.40, t = −4.21, p < .001;
Table S2, Figure 3A). In contrast, for ambiguous lotteries,
increasing arousal predicts a greater likelihood of taking
the gamble for both low and medium ambiguity levels
(low: β = 0.56, t = 2.32, p = .02; medium: β = 0.61,

t= 2.50, p= .01; Table S3). These results hold even when
controlling for the subjective value of the lottery (we used
the residuals from SCRi,t = β0 + β1SVi,t to predict the
probability of taking the gamble, which enables us to
probe the direct influence of arousal on choice irrespec-
tive of the effects of subjective value). This replicates
our earlier work (FeldmanHall et al., 2016), suggesting that
in the risk domain, arousal helps to signal that one should
refrain from gambling when there is ample evidence that
the option will likely reap negative outcomes (e.g., only
25% chance of winning); however, in the ambiguity do-
main, arousal plays a broader role in the representation
of value and the facilitation of increased gambling behav-
ior. For all other HC analyses, see supplement.

Patients: Emotional Arousal and Choice under
Risky Uncertainty

Given the finding in HCs that arousal plays a role in de-
cisions to take the sure option when the gamble is very

Figure 3. (A) HCs: Dovetailing with past research using the same analysis (FeldmanHall et al., 2016), higher arousal predicts reduced gambling
during highly risky trials (low odds of winning the lottery, 25% risk), whereas during ambiguous uncertainty, higher arousal results in increased
gambling (collapsing 24–50% ambiguity levels). (B) lPFC patients: Higher arousal responses predict increased gambling during highly risky trials.
Nota bene: Arousal levels were attenuated under ambiguity. (C, D) mPFC and MTL patients: Like HCs, higher arousal predicted reduced gambling
during highly risky trials in both patient groups. Although there appears to be an aberrant relationship between arousal levels and decisions
to gamble under ambiguous uncertainty for both the mPFC and MTL groups, these analyses did not reach significance against HCs. In all
panels, SCR is plotted in increments of 0.5 for presentation purposes only; however, during analysis, SCR was treated as a continuous variable
(Tables 5 and 6 and Tables S2–S9). Error bars reflect 1 SEM.

Table 5. Relationship between Choice and SCR for Highly Risky Gambles: All Patient Groups Compared with HCs

Dependent Variable Coefficient (β) β Estimate (SE) t Value p Value

Risky Choice

Intercept −1.2 (0.15) −7.56 <.001***

mPFC SCR −0.007 (0.007) −0.98 .32

lPFC SCR 0.02 (0.007) 2.83 .004*

MTL SCR −0.95 (0.005) −0.88 .37

Highly Risky Choicei,t = β0 + β1 SCRi,t(Lesion Type)i. Where Choice is indexed by participant and trial only for the highly risky trials and Lesion Type
is an indicator variable, such that HCs serve as the reference group and SCR is indexed by participants and trial only for the highly risky trials.

*p < .05.

**p < .01.

***p < .001.
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risky (Figure 3A, Table S2), we wanted to investigate
whether there was evidence of a similar relationship in
any of the patient groups. Thus, we ran each patient group
through the same analysis pipeline as the HCs. Both the
mPFC (β = −2.57, t = −3.13, p = .001; Figure 3C,
Table S6) and MTL (β = −3.17, t = −3.11, p = .002;
Figure 3D, Table S8) groups exhibited the same intact
arousal–choice relationship observed in HCs, indicating
that higher arousal predicts attenuated gambling behavior
when the gamble is very risky (25% chance of winning).
However, we found no intact relationship between arousal
and risky choice for the lPFC group (Table S4). In other
words, except those with lesions to the lPFC, every other
group (HCs, mPFC patients, and MTL patients) demon-
strated the same pattern of increasing arousal predicting
a greater likelihood of taking the safe option when the lot-
tery was highly risky (it should be noted that both the lPFC
and mPFC groups had overall attenuated arousal re-
sponses compared with HCs; Figure S3). Second, we
wanted to examine whether this relationship between
arousal and choice in each patient group was significantly
different from the one exhibited by HCs. Using a hierar-
chal logistic regression, we indexed highly risky choices
as a function of trial-by-trial SCRs and lesion type, where
HCs served as the reference category. This revealed that,
when there was a 25% chance of winning, only the lPFC

group’s relationship between arousal and choice was sig-
nificantly different than the one observed in HCs, and in
fact, higher arousal in lPFC patients resulted in greater risk
taking when there was a low probability of winning—the
opposite relationship to that observed in HCs (Table 5,
Figure 3B). Taken together with the evidence from the
other groups, it may be the case that lPFC patients gamble
more because they are unable to interpret amplified
arousal as a signal denoting that the gamble is too risky
to be taken.

Patients: Emotional Arousal and Choice under
Ambiguous Uncertainty
We followed the same logic for exploring choice under
ambiguous uncertainty. In HCs, we observed that, when
the trial contained low to medium levels of ambiguous
uncertainty, higher arousal led to greater gambling be-
havior (Figure 3A, Table S3). Interrogating the arousal–
choice relationship separately for each lesion group re-
vealed that, when the gambles were somewhat ambigu-
ous, those with lPFC damage (all ps > .38; Figure 3B,
Table S5), mPFC damage (all ps > .79; Figure 3C, Table
S7), and unilateral amygdala damage (all ps > .07;
Figure 3D, Table S9) did not exhibit a relationship between
enhanced arousal and increased gambling. We then

Figure 4. Lesions from patients overlaid on structural MRI slices. Nine patients had lesions to the medial part of the PFC (mPFC), which
extended dorsally until the precentral sulcus, with maximum overlap in a region directly rostral to the anterior genu and the anterior pole for
six of the nine patients. Eight patients had lesions to the lateral regions of the PFC (lPFC), which extended dorsally until the precentral sulcus
and medially until the cingulate, with maximum overlap in seven patients in Brodmann’s area 44. Sixteen patients had localized, unilateral
lesions to the amygdala, some of which extended posteriorly throughout the hippocampus, but all of which had maximum overlap in the
amygdala. Spatial heat maps reflect the number of patients with overlapping lesions to each brain area (see color bar).
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explored whether these seemingly aberrant relationships
were statistically different from the one observed in HCs.
A hierarchal logistic regression testing the relationship be-
tween arousal and choice, as a function of patient group
(where the HCs served as the reference category), showed
that these differences failed to reach significance between
the HCs and the patient groups (Table 6), perhaps because
of the overall lower levels of arousal during ambiguous
uncertainty observed in all patient groups (e.g., both pre-
frontal groups failed to generate an SCR response of more
than a 1.5 μS).

DISCUSSION

For almost two decades, research investigating decisions
under uncertainty have not been able to settle on which
regions of the brain are necessary for processing risk and
ambiguity. To explore this, we leverage a lesion
approach, using both a model-free and model-based pro-
cedure to separately estimate individuals’ risk and am-
biguity attitudes (Tymula et al., 2012; Levy et al., 2010)
while simultaneously measuring the body’s arousal
response (FeldmanHall et al., 2016). First, we replicate
our prior work illustrating that the arousal response dif-
ferentially responds to decisions of risk and ambiguity,
such that enhanced arousal is linked either with taking
fewer gambles when there is a high probability of loss
in a very risky context or with greater exploratory be-
havior during ambiguous contexts (e.g., increased
ambiguity tolerance; FeldmanHall et al., 2016). Second,
in contrast to prior work that only showed a relationship
between regions of the OFC and amygdala and ambiguity
(Hsu et al., 2005), here, we find that the mPFC and amyg-
dala do not appear to be as involved in processing deci-
sions of risk or ambiguity, at least not in our task. In
contrast, it appears that the lPFC plays a more general
and seemingly necessary role in evaluating all decisions
under uncertainty.

More specifically, our findings show that disrupting
lPFC function impairs behavior in risky and ambiguous
contexts, making individuals more risk and ambiguity
seeking across the board. This indicates that the lPFC

plays a role in processing uncertainty in a global fashion,
likely providing a critical regulatory response that en-
hances an individual’s cautiousness when confronted
with decisions of uncertainty. These behavioral patterns
were associated with impaired arousal responses:
Because lPFC patients did not have an intact arousal re-
sponse during highly risky lotteries—which would have
signaled the risk may not be worth taking—they gambled
at disproportionately high rates. In fact, the arousal–
choice relationship was in the opposite direction to
what was observed in HCs, revealing that higher arousal
led to greater gambling behavior when there were very
low odds of winning the lottery. This accords with prior
work illustrating that the lPFC is critical for flexible reg-
ulation of emotional responses (Ochsner, Bunge, Gross,
& Gabrieli, 2002) and goal-directed behavior (e.g., emo-
tion regulation; Smittenaar, FitzGerald, Romei, Wright,
& Dolan, 2013; Essex, Clinton, Wonderley, & Zald,
2012) and that functional disruption to the lPFC results
in a failure to appraise the attendant arousal response. In
other words, it may be the case that lPFC patients gamble
more because they are unable to interpret arousal as an
adaptive signal for how to behave when the choice is
uncertain. Accordingly, it appears that, when evaluating
risky and ambiguous options, the lPFC is integral in ex-
plicitly employing higher-level appraisals that assign value
to emotional states and regulatory strategies (Dixon,
Thiruchselvam, Todd, & Christoff, 2017), situating it as
a unitary hub—or a general system—for evaluating risk
and ambiguity.
In contrast, lesions to the mPFC did not influence risky

decisions (confirmed with both model-based and model-
free analysis). This behavioral pattern dovetails with the
arousal results: As with HCs, mPFC patients exhibited
normal risk-taking behavior and an intact relationship be-
tween higher arousal levels and greater risk aversion when
the choice was very risky. There was, however, less consis-
tent evidence of the mPFC and its role in ambiguous un-
certainty (revealed by inconsistent results derived by our
model-free and model-based approaches). Although we
did not find any relationship between the amount of
damage to the mPFC and choice using our model-free ap-
proach, a model-based approach revealed that those with

Table 6. Relationship between Choice and SCR for Ambiguous Gambles: All Patient Groups Compared with HCs

Dependent Variable Coefficient (β) β Estimate (SE) t Value p Value

Ambiguous Choice

Intercept 0.02 (0.11) −0.33 .76

mPFC SCR −0.007 (0.005) −1.45 .14

lPFC SCR 0.008 (0.006) 1.50 .13

MTL SCR −0.007 (0.004) −1.40 .17

Ambigous Choicei,t = β0 + β1 SCRi,t(Lesion Type)i. Where Choice is indexed by participant and trial and Lesion Type is an indicator variable, such
that HCs serve as the reference group and SCR is indexed by participants and trial.
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functional disruption to the mPFC did exhibit greater
ambiguity-seeking behavior (see supplement, Figure S5).2

Although we are hesitant to draw strong conclusions
about the role of the mPFC during ambiguous decision-
making given the inconsistency between these two
approaches, we further note that the mPFC group also
failed to show an intact arousal–choice relationship when
the lotteries were ambiguous. Taken in conjunction with
the additional impairment in the relationship between
arousal and subjective value (see supplement, Table
S11), it is possible that the mPFC is involved in contrib-
uting critical affective signals that may guide the repre-
sentation of value during ambiguous choices.
Although these results are modest in nature, a failure

to observe intact behavior or an arousal–behavior rela-
tionship under ambiguous uncertainty might be reflec-
tive of the mPFC’s role in evaluating and appraising the
value associated with stimuli (Banks, Eddy, Angstadt,
Nathan, & Phan, 2007). In the context of our findings,
it is possible that the relatively high-level appraisals
thought to be carried out by the mPFC may modulate
any initial, crude subcortical assessments—which are
perhaps supported by engagement of the amygdala. Given
that themPFC is also known to index information about task
context (Euston, Gruber, & McNaughton, 2012), other’s
mental states (Spreng & Grady, 2010; D’Argembeau et al.,
2007; Saxe, 2006, Völlm et al., 2006), and value represen-
tations associated with discrete stimuli (Levy & Glimcher,
2012; Padoa-Schioppa, 2011; Levy et al., 2010), it would
make sense that this region is adept at using environmen-
tal clues to guide emotion-related valuations to respond
in a more specific, contextualized, and possibly adaptive
manner (Ochsner & Gross, 2014). Alternatively, it is pos-
sible that the mPFC results are not robust in nature and
should thus be treated cautiously.
Finally, the fact that we found no evidence that dam-

age to the amygdala impacted decisions under either
risk or ambiguity suggests that there should be restraint
in associating the amygdala with decisions of uncer-
tainty. It is worth noting, however, that the MTL group
was composed solely of patients with unilateral damage.
Although we did not find any observable systematic ef-
fects because of the laterality of the lesion, it is quite
possible that a group with bilateral damage would exhib-
it a different pattern of results that may have been
masked by the existence of an intact, albeit lateralized,
amygdaloid complex.
For the last few decades, the literature has not been

able to converge on whether a unified integrated neural
system processes both types of uncertainty or whether
there are two dissociable systems for processing risk
and ambiguity. Here, we find evidence that only one re-
gion—the lPFC—seems to be globally necessary for re-
sponding appropriately to both risk and ambiguity. This
was also reflected by an impaired relationship between
arousal and choice. Future work can help further unpack
how these uncertainty constructs are processed under

different contexts, such as when the uncertainty is espe-
cially social in nature.

Acknowledgments

We thank Julian Wills for assistance in data collection.

NYU PROSPEC Collaboration: The New York University Patient
Registry for the Study of Perception, Emotion, and Cognition
(NYU PROSPEC) includes the following group of clinical
researchers and their affiliations.

Karen Blackmon,1,2 Orrin Devinsky,1,3,4 Werner K. Doyle,1

Daniel J. Luciano,1 Ruben I. Kuzniecky,1,5 Michael Meager,6

Siddhartha S. Nadkarni,1,4 Blanca Vazquez,1 Soul Najjar,7,8

Eric Geller,9 John G. Golfinos,3,10 Dimitris G. Placantonakis,3

Daniel Friedman,1 Jeffrey H. Wisoff,3,11 Uzma Samadani3,4,12,13

1Department of Neurology, New York University School of
Medicine, New York, NY 10016, USA

2Department of Physiology, Neuroscience, and Behavioral
Sciences, St. George’s University School of Medicine, St. George,
Grenada, West Indies

3Department of Neurosurgery, New York University School of
Medicine, New York, NY 10016, USA

4Department of Psychiatry, New York University School of
Medicine, New York, NY 10016, USA

5Department of Neurology, Hofstra Northwell Health School
of Medicine, New York, NY 10075, USA

6Department of Psychology, New York University, New York,
NY 10003, USA

7Lenox Hill Hospital and Staten Island University Hospital,
Northwell Health, New York, NY 10075, USA

8Department of Neurology, Hofstra North Shore Long Island
Jewish School of Medicine, Hempstead, NY 11549, USA

9St. Barnabas Medical Center, Livingston, NJ 07039, USA
10Department of Otolaryngology-Head and Neck Surgery,

New York University School of Medicine, New York, NY
10016, USA

11Department of Pediatrics, New York University School of
Medicine, New York, NY 10016, USA

12Veterans Affairs New York Harbor Health Care System,
New York, NY 10010, USA

13Department of Physiology & Neuroscience, New York
University School of Medicine, New York, NY 10016, USA

Reprint requests should be sent to Oriel FeldmanHall,
Department of Cognitive, Linguistic, Psychological Sciences,
Carney Institute for Brain Science, Brown University, Providence,
RI 02906, or via e-mail: Oriel.feldmanhall@brown.edu.

Notes

1. Supplementary material for this paper can be retrieved
from https://static1.squarespace.com/static/56100827e4b0a8a
ca363cc5f/t/5d2e413a5b6ece00015b155a/1563312442863/
RApatient_SI_Final_Press.pdf

2. This may be because, although the Gilboa and Schmeidler
model appears to covary fairly accurately with behavior, it may
do a less successful job of indexing how ambiguity is represented
at the neural level.
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