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A long line of empirical research documents that consumer valuations are shaped by choice sets, yielding

patterns of substitution between alternatives as choice sets are varied. Building on recent neuroeconomic

evidence that valuations are transformed during the choice process, we incorporate the canonical divisive

normalization computation into a discrete choice model and characterize its implications for consumer choice.

We find that divisive normalization predicts choice behaviour that depends on both the size and composition

of the choice set and examine evidence for such behaviour from two experiments. Divisive normalization more

accurately captures observed behaviour compared to alternative models, including a range normalization

model, and is robust across experimental paradigms. Finally, we demonstrate that divisive normalization

implements an efficient means for the brain to represent valuations given neurobiological constraints, yielding

the fewest choice errors possible.

1. Introduction

Consider a single bar of chocolate. In the study of consumer choice, it is typically assumed that a

consumer has a valuation of this chocolate bar and that this valuation can be measured (say, by a

willingness-to-pay mechanism, or a rating scale). While any number of factors might determine a

consumer’s valuation, like the amount, type, or “nuttiness” of the chocolate, a standard assumption

is that this valuation is stable; when faced with a variety of other alternative chocolate bars, the
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consumer’s choice should be determined by their willingness-to-pay for each item individually.1 In

this article, we study how consumer valuations might instead be shaped by the composition of the

choice set during the decision-making process.

How consumer preferences depend on the elements of a choice set, and why they might differ

from a strict rational benchmark, has long been of interest to behavioural science. A long literature

demonstrates systematic inconsistency between independent willingness-to-pay measures and the

valuations implied from choices between pairs of alternatives (Slovic and Lichtenstein 1983). This

has led to a recognition that preferences are typically constructed at the time of choice, rather

than simply stored, retrieved, and compared (Lichtenstein and Slovic 2006, Weber and Johnson

2009). The process by which this value information is accumulated and compared in a decision can

bias preferences toward an alternative simply because of the constraints involved in simultaneously

processing information about both choice alternatives (Krajbich et al. 2010, Polania et al. 2019).

Beyond binary choice, an early sufficient condition for rational choice models held that relative

preferences (i.e. relative choice probabilities) between any two alternatives should be independent

of all others, formally stated as the axiom of Independence of Irrelevant Alternatives (IIA; Luce

1959). This axiom served as a benchmark because, if IIA is satisfied, it is sufficient to represent

a decision maker’s preferences with a random utility and analyze their choice behaviour with the

familiar Multinomial Logit model (McFadden 2001, for a review). Not surprisingly, IIA places

strong conditions on behaviour (Debreu 1960) and violations have been well-documented empiri-

cally at both the population and individual level (Rieskamp et al. 2006). These violations consist

of patterns of substitution between alternatives as the composition of the choice set is varied.

Some forms of IIA violations can be rationalized by placing different distributional assumptions

on the random utility representation (Train 2009). This includes allowing the variance of a random

utility to depend on the composition of the choice set, an issue particularly critical to analyzing

consumer choice data in both the lab and field (Louviere et al. 2002, Salisbury and Feinberg 2010).

This modelling approach, however, is — by definition — agnostic about the process by which

decisions are made. Linking the choice model more tightly to the decision process can therefore

lead to a better-performing model. In this article, we leverage recent neurobiological evidence to

model how valuations are transformed and compared in the decision-making process. Similar to

perceptual systems in the brain, we focus on the role of neurobiological constraints in shaping the

valuations of choice alternatives according to a neural computatton called divisive normalization.

1 Otherwise, if valuations can arbitrarily depend on other alternatives, a sequence of choice sets and auctions can be
constructed that would reveal a cycle in choice behaviour. Such cycles would violate the transitivity axiom, one of the
two necessary conditions underlying a deterministic rational choice model (Samuelson 1948). In a stochastic setting,
choice probabilities could violate Weak Stochastic Transitivity, which Rieskamp et al. (2006) refer to as “perhaps the
weakest bound on rationality.”
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We then embed divisive normalization in a discrete choice model, examine the substitution patterns

which result, and compare them to both standard random utility formulations as well as other

recent models proposed to incorporate bound constraints.

1.1. Neurobiological Constraints on Choice

The observation that biology influences choice behaviour is not novel (Robson 2001a, Robson and

Samuelson 2010, Netzer 2009, Alonso et al. 2014). This includes the observation that a constrained

decision process implies behaviour we might strictly term irrational ex-ante, but is in fact an

optimal response to some constraint (Simon 1979).2 Like constraints traditionally described in eco-

nomics, neurobiological constraints arise from scarcity. Neurons require energy in order to transmit

information, and resources must be allocated to various neural systems for various tasks. This

fundamental constraint has two important implications for neural computation.

Neural activity is stochastic. Stochasticity in neural activity arises, at least in part, from

the small-scale thermodynamic processes involved in the transmission of information between

neurons (Mainen and Sejnowski 1995, Stevens 2003, Glimcher 2005). Increasing the number

(or size) of neurons that participate in a computation can only partially mitigate this stochas-

ticity (Shadlen and Newsome 1998) and this is costly in terms of resources. Ultimately, this

stochasticity influences the discriminability of quantities encoded by neural activity, yielding

a degree of stochastic behaviour (Glimcher 2005).

The brain encodes information in relative terms. The relative coding of information by

neural systems is one of the fundamental observations of neuroscience in the past century

(Hartline and Ratliff 1957). Because neural activity is bounded – in terms of the dynamic

range of a single neuron and the finite number of neurons in a brain area – computational

algorithms have evolved which efficiently compress the objective state of the world for sub-

jective perception.3 This relative representation of information is observed to be a general

feature of sensory coding (Carandini and Heeger 2012), and more recently, has been observed

in the neural computations of value information (for reviews, see Seymour and McClure 2008,

Rangel and Clithero 2012, Louie et al. 2015).

Our contribution is to examine how choice-set dependence arises in a decision process which

obeys neurobiological constraints, and to formally test predictions on what form it will take. We

2 The recent literature on rational inattention, for example, examines how constraints on information-processing
(Shannon 1948) can explain observed departures from rational expectations, expected utility, and the random utility
model (Sims 2003, Woodford 2012, Caplin and Dean 2015).

3 On the retina, for example, light intensity is encoded relative to average ambient illumination; this process of light
adaptation is why black type on white newspaper appears the same in a darkened room and under bright sunlight,
even though the newsprint may reflect orders of magnitude more photons in the latter environment. We survey this
literature in Appendix A.1.
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consider a bounded function which is tasked with identifying the highest-valued alternative in a

choice set.4 For guidance on the form of this function, and its role in shaping valuations during the

decision process, we turn to the neurobiological evidence.

1.2. Divisive Normalization

Divisive Normalization is a pervasive computation in cortex which implements a relative coding

of information (Carandini et al. 1997, Schwartz and Simoncelli 2001). Originally observed in the

cortical regions of the brain involved in visual perception (Heeger 1992), divisive normalization

has been documented across sensory modalities and across species ranging from invertebrates to

primates (Carandini and Heeger 2012). More recently, evidence for normalization has been observed

in the neural computation of valuations while subjects evaluate potential choice alternatives: neural

activity associated with the value of a choice object is suppressed by the valuation and number

of other alternatives (Louie et al. 2011, Holper et al. 2017). We review this empirical literature in

more detail in Appendix A.2.

Divisive Normalization is a simple neural computation that can be implemented by only a few

neurons in a cortical circuit; mathematically, it can be represented by a function which scales, or

normalizes, its inputs (Louie et al. 2014, LoFaro et al. 2014). Consider first a simplified form of the

Divisive Normalization function,

zi(v) =
vi
‖v‖β

, (1)

where each element of an input vector v = [v1, . . . , vN ]∈RN+ is scaled by the magnitude and number

of its elements by a norm of degree β, denoted ‖v‖β ≡
(∑N

n=1 v
β
n

) 1
β

. If we take the inputs vi to

represent some independent valuation of an alternative i, and zi(v) to represent the transformation

of each alternative in a choice set at the time of decision, then each alternative is normalized with

respect to the entire vector of alternatives, yielding a bounded function with a relative relationship

between alternatives.5

To establish both the positive and normative implications of Divisive Normalization, in Section

3 we incorporate a general form of (1) directly within a discrete choice model and demonstrate

how choice probabilities depend on the size and composition of the choice set. Previous work has

4 Robson (2001b) and Rayo and Becker (2007) first considered the properties of an optimal value function given i.)
the limited perception of small differences in value, and ii.) the value function is bounded above and below. Using
a metaphorical principal-agent environment to mimic evolutionary forces, they demonstrate that the optimal value
function must be adaptive and depend on the distribution of alternatives in the choice set. Li et al. (2017) demonstrate
this result numerically for a class of bounded functions. See also Alonso et al. (2014) for an argument for why an
optimal allocation of neural resources might be bounded.

5 This form of normalization has been previously studied in the sensory perception literature (Lyu and Simoncelli
2008, Lyu 2011, Sinz and Bethge 2013, Ballé et al. 2016a). Its role is to remove high-order correlations from natural
images (e.g. Ballé et al. 2016b). Typical implementations of normalization consider a range for β between 2 and 3 in
sensory systems. See Appendix A.1 for more detail.
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demonstrated that a simple form of normalization (with β = 1) is qualitatively consistent with

violations of the IIA axiom (Louie et al. 2013). Here, we fully characterize the substitution patterns

that arise from a general form of (1) when adding and altering alternatives in the choice set. We

demonstrate how this general formulation can be estimated and tested formally with discrete choice

data, how it incorporates some existing forms of normalization as a special case, and contrast its

predictions with alternative models.

For example, Divisive Normalization predicts a decrease in the likelihood of choosing a high-

valued alternative as low-valued alternatives are added or manipulated. Consider two alternatives

which, when evaluated independently, have valuations v1 > v2 ≥ 0. Under divisive normalization,

introducing a third alternative v3 < v2 to this choice set shrinks the difference between z1(v)−z2(v).

This gap shrinks further as the value of this third alternative increases, or as more lower-valued

alternatives are added. Provided a stochastic model in which choice probabilities depend on valua-

tion differences, normalization therefore predicts how the probability of choosing the highest-valued

alternative depends on the set of alternatives. This yields novel forms of IIA violations and choice

probabilities compatible with Weber scaling (Weber 1834), and imposes a precise specification for

how the variance of the model differs over choice sets.

However, even in the absence of normalization, it is not immediately clear that a random utility

model cannot capture such substitution patterns. While the Multinomial Logit obviously predicts

no IIA violations as v3 is altered, the flexible Multinomial Probit (MNP) formulation can capture

a wide variety of substitution patterns, thus may outperform a model with Divisive Normalization.

Alternative forms of normalization, such as scaling valuations by their range rather than their sum

(Soltani et al. 2012, Bushong et al. 2016), also make predictions about the pattern of context-

dependent choice (see Section 3.2).

To sort between these different explanations, in Section 4 we estimate and test the predictions

of a general normalization model in two behavioural experiments: one previously reported trinary

choice experiment which varies the composition of the choice set (Louie et al. 2013), and a second

novel experiment which varies the size of the choice set. Importantly, our modelling approach nests

competing accounts for IIA violations. We find strong evidence for Divisive Normalization; neither

the MNP nor Range Normalization are able to capture the substitution patterns we observe. Our

structural specification also provides an estimate for the degree of normalization β that is larger

than the simple form (with β = 1), and we find evidence that recurrent connections are more

strongly-weighted in the normalization equation then all others.

Our structural approach to model testing has one other advantage: the resulting estimates of

normalization parameters can be used to examine the robustness of each model.6 Our second

6 The term “structural” is used in the econometrics literature to describe whether a model is imposed on the data for
the purposes of estimating parameters that are believed to be invariant and informative, in contrast with a “reduced
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experiment, conducted on a separate subject sample, therefore allows us to assess each model’s

performance in a strict out-of-sample prediction exercise. Notably, the estimates from the Divisive

Normalization model in the trinary experiment provide a good prediction of the choice probabilities

in the second experiment that varies the size of the choice set; this out-of-sample prediction performs

better than both a standard Probit and a Range Normalization model fit in-sample.

From a normative standpoint, Divisive Normalization has also been shown to yield an efficient

coding of sensory information in a constrained neural system (Schwartz and Simoncelli 2001, Wain-

wright et al. 2001, Sinz and Bethge 2013, Qamar et al. 2013). However, the normative implications

for choice behaviour have remained unclear, particularly because Divisive Normalization predicts

a decrease in the likelihood of choosing a higher-valued alternative as low-valued alternatives are

manipulated or as the choice set is expanded (up to 20% observed for the largest choice sets in

our experiment). In the absence of constraints, such behaviour can be strictly termed inefficient.

However, given neurobiological constraints, Divisive Normalization implements choice behaviour

that is optimal (in the sense of minimizing choice errors).7 We thus offer one explanation for why —

on a neurobiological level — boundedly rational behaviours exist. Taken all together, these results

emphasize both the positive and normative advances offered by developing choice models grounded

in neuroscience.

2. Model

To highlight the role of normalization in shaping valuations during a decision, we present a simple

“two-stage” model of decision-making (Glimcher 2011, Fehr and Rangel 2011, Webb et al. 2019).

The distinction between these stages lies in brain regions that aggregate value information in an

action-independent manner and those that employ that value information in the process of choice

(Platt and Plassmann 2013, Polania et al. 2015). Here, we adopt this two-stage model to demon-

strate how the Divisive Normalization computation shapes valuations in a discrete choice model.

For a more nuanced discussion of the empirical literature underlying this modelling approach, see

Appendix A.3.

We begin by defining a quantity called subjective value that carries information about the val-

uations of each alternative in a choice set of size N . These valuations are denoted by the vector

form” analysis which places as few modelling assumptions on the data as possible (such as examining summary
statistics). In cognitive psychology, it is much more common to build and estimate “process” models (what economists
might call “structural” models).

7 Building on prior work by Swait and Marley (2013) that relates Shannon entropy to a generalized Logit, Steverson
et al. (2018) develop a normative foundation for Divisive Normalization by optimizing the tradeoff between the cost
of errors and the cost of reducing stochasticity.
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v = [v1, . . . , vN ] ∈ RN+ , where vi is the valuation of each alternative i ∈ {1, . . . ,N}.8 Without loss

of generality, we will assume that the first alternative has largest valuation, so v1 > vj,∀j 6= 1.

To isolate the behavioural implications of Divisive Normalization, we will assume that a particu-

lar observation of v has been realized, thus it is deterministic in the subsequent analysis. In our

empirical analysis, we will measure this valuation with a standard willingness-to-pay mechanism

independently for each item (Becker et al. 1964).9

The second stage of the model involves the comparison of subjective value for the purpose of

choice. This is where we will explore the implications of neurobiological constraints. In particular,

we consider a function which maps the valuations of all alternatives in the choice set into a common,

bounded, region of neural activity for comparison. Formally, we define z(v) : RN+ →Z which maps

v to a vector [z1(v), . . . , zN(v)] in a compact subspace Z ≡ [0, z̄]N ⊂RN+ . The bound constraint is

therefore given by 0< z̄ <∞.

In Section 2.1 we will examine the role of the divisive normalization function

zi(v) =
vi

σ+ω
(∑

n v
β
n

) 1
β

. (2)

in implementing the bound constraint z̄. In this general formulation, the parameter σ determines

how neural activity saturates with increased input and can be interpreted as the baseline activ-

ity level of neurons in the normalization pool. The weight ω determines the contribution to the

normalization pool for each alternative. If ω= 0, there is no normalization.

8 Note that this definition is general enough to incorporate a range of discrete choice models which take observable
attributes as arguments. For instance, a realization of v can be constructed via a behavioural theory linking different
attributes x to valuations, v = V (x), whether those attributes are defined either objectively as sensory input or only
latently (Bhatia and Stewart 2018). We strongly suspect that the brain implements relative coding in earlier stages
of the decision-making process — for instance in the construction of v. The existence of some form of relative coding
in attribute integration essentially follows both from the results in Rayo and Becker (2007) and the neurobiological
evidence for sensory systems (see Appendix A.1). Here, we restrict our attention to the role of value normalization
that has been empirically documented in parietal regions of the primate brain (see Appendix A.2). We do so to provide
a parsimonious account of the role of neurobiological constraints — and normalization in particular — in predicting
context-dependent choice patterns beyond the multi-attribute domain typically studied. In recent work extending
normalization to the multi-attribute domain, Landry and Webb (2019) address a range of phenomena including
well-known decoy effects that rely on a particular structure of numerically-presented attributes (Huber et al. 1982,
Simonson 1989, Tversky 1972). The fundamental feature of this, and a number of other models in the literature, is an
aggregation and transformation of attribute information into a decision variable for each alternative (e.g. Trueblood
et al. 2014, Tsetsos et al. 2010, Noguchi and Stewart 2018). The model of value normalization presented here cannot
mimic some features of these attribute-based models. For example, if v1 > v2 > v3 then z1(v)> z2(v) for all values
of v3, therefore the ordering of alternatives can never switch (we discuss violations the Regularity axiom further in
Appendix B). We believe a choice model with multiple stages of normalization is of great interest, see Zimmermann
et al. (2018) for an initial example.

9 Neural correlates of willingness-to-pay measures in pre-frontal brain regions are described in (Plassmann et al. 2007,
Chib et al. 2009).
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Finally, the choice process is modelled by the decision vector u = z(v) + η, which appends a

stochastic term η = [η1, . . . , ηN ] ∈ RN to the normalized valuations. The decision-maker chooses

option i when

ui >uj, ∀j 6= i

zi(v) + ηi > zj(v) + ηj, ∀j 6= i (3)

yielding a probability of choosing i,

Pi(z(v)) =

∫
1 [zi(v)− zj(v)> ηj − ηi, ∀j 6= i]f(η)dη, (4)

which depends on the probability density function f(η).10

We therefore interpret v as a decision maker’s independent valuation of a consumer good, and

we study the choice behaviour implied when these valuations are normalized, via z(v), in the

implementation of a decision.

2.1. Implementing the Bound Constraint via Normalization

Upon initial consideration, a range of possible constraints on the allocation of neural activity are

possible. Most leniantly, the neural activity of each alternative could be non-rivalrous, thus any

activity levels z(v)∈Z are feasible. This is the constraint depicted in Figure 1, where each zi(v)≤
z̄. At the other extreme, the neural activity could be perfectly rivalrous, resulting in the linear

constraint
∑

i zi(v)≤ z̄. Of course, a non-linear constraint can lie between these two extremes.

The critical feature of the Divisive Normalization is that it scales neural activity to the boundary

of these possible constraints, depending on the form of the normalization. For exposition, we present

these results for the simple form of normalization given in Equation (2) with σ= 0. In our empirical

results in Section 4, we will consider more general forms. Appendix ?? explores the implications

of relaxing this assumption on σ in more detail.

We begin with the linear constraint. If β = 1, then the normalization function z(v) scales the

vector v along a ray to the origin, proportioning neural activity between the alternatives along the

line:

z̄ =
∑

i

zi(v) =
∑

i

vi
ω
∑

i vi
=

1

ω
. (5)

10 The prevailing models of the comparison stage of the decision process (for example, the drift diffusion model, Ratcliff
1978) have been shown to yield a stochastic additive formulation (Webb 2019). Moreover, this process determines the
density f(η). For instance, it is broadly observed that as neural activity increases, the signal-to-noise ratio of decoded
neural quantities also increases (e.g. McAdams and Maunsell 1999, Churchland et al. 2011). This is important because
of a vast literature documenting that individual neural responses are approximately Poisson-like in their activity
(Tolhurst et al. 1983). In terms of our model, this implies that the variance of η should not scale too strongly with
v, else choice might become more stochastic as valuations increase. Indeed, we will see that normalization can be
interpreted as a specification of the variance of a choice model, thus imposes strong, testable, implications on choice
data.
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z(v)

v

z1

z2

z̄

z̄

Figure 1 The transformation z(v) for binary choice. The stochasticity in the comparison η is depicted by the

shaded error density. Therefore the distance from the vector to the 45◦ line determines the probability that the

alternative with the highest value is chosen, Pr[u1 >u2].

1/!

1/!

1/!

1/!

z2

z1

v

z(v0)

z(v)

v0

z2

z1

P
i z

i (v) =
z̄

v

z(v0)
z(v)

v0

Figure 2 The proportionate scaling implemented by normalization for β = 1 (left) and β = 2 (right).

We now can reinterpret the bound z̄ as the ratio 1/ω, with ω determining the strength of the

normalization (Figure 2). As ω→ 0, the normalization term shrinks and along with it the means

to bound z(v).

For any β > 0, divisive normalization maps v to a general class of geometric figures known as

a super-ellipse. For instance, when β = 2, normalization scales the vector v to the quarter-circle

of radius 1/ω, since z(v) = 1
ω

v
||v|| . Setting β = 3 maps v to a hyperellipse, while β =∞ maps to

the square of size 1/ω (see Figure 1). Notice that in each of these cases, divisive normalization

preserves the relative magnitudes of the elements of v and scales neural activity to the boundary

determined by z̄. Therefore divisive normalization implements a relative coding of value, subject to
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the boundary constraint on neural activity. In the following sections, we will explore the patterns

in choice behaviour generated by this relative coding of valuations.

3. Behavioural Implications of Normalization

The behavioural predictions of normalization stem from the interaction between scale and stochas-

ticity that is typically present in discrete choice models (McFadden 2001, Train 2009). To explore

these predictions, we incorporate the normalization equation (2) directly into (4):

Pi(z(v)) =

∫
1

[
vi− vj

σ+ω(
∑

n v
β
n)

1
β

> ηj − ηi, ∀j 6= i

]
f(η)dη. (6)

In a model without normalization (ω = 0), choice probabilities are given by a standard random

utility formulation, thus the scale of the model is set by the variance of the stochastic term η.

For instance, when f(η) is the density of the independent normal distribution, Var(ηi) is typi-

cally assumed to be 1, and the parameter σ determines the variance of a binary Probit model:

Pr [vi− vj >σ(ηj − ηi)]. Note that this variance is constant over choice sets.

By contrast, introducing normalization scales the variance in a systematic manner proportional

to the number and value of the alternatives in the choice set. This scaling depends on assumptions

placed on the density f(η), but for now, we simply maintain the standard assumption that Var(ηi) is

a constant. In an important respect, a distributional specification is also what we are proposing here.

If one multiplied the denominator of the normalization equation (6) through to the right-hand side

of the inequality, the distribution of the error η could be appropriately redefined to incorporate nor-

malization, with the inequality in brackets in (6) given by:
[
vi− vj >

(
σ+ω(

∑
n v

β
n)

1
β

)
(ηj − ηi)

]
.

Therefore value normalization is equivalent to specifying that the variance of the stochastic term

in a discrete choice model depends on magnitudes in a particular manner. Recall that i= 1 denotes

the highest valued alternative of a choice set. The following proposition states how the probability

of choosing this alternative, P1, decreases in the magnitude of the valuations.

Proposition 1 (Scaling of Choice Stochasticity). For all v and v′ such that vi−vj = v′i−
v′j, and v′i > vi, ∀i, j, a normalized value function (2) implies that P1(z(v′))<P1(z(v)).

Proof From (2),

|zi(v′)− zj(v′)|=

∣∣∣∣∣∣
v′i− v′j

σ+ω
(∑

i v
′β
i

) 1
β

∣∣∣∣∣∣
=

∣∣∣∣∣∣
vi− vj

σ+ω
(∑

i v
′β
i

) 1
β

∣∣∣∣∣∣
< |zi(v)− zj(v)|.

Moreover, for the highest valued alternative,

1 [z1(v′)− zj(v′)> ηj − η1]≤ 1 [z1(v)− zj(v)> ηj − η1] ,∀η and ∀j 6= 1.

Therefore P1(z(v′))<Pī(z(v)) from (4). �
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Some intuition for this scaling and its effect on choice behaviour can be observed in Figure 3.

Consider two binary choice sets in which the difference between the valuations in each set are

constant (v1 − v2 = v′1 − v′2), but the alternatives in one set are of higher value (i.e. v′i > vi). In

an additive random utility model, the resulting choice probabilities in these two choice sets are

equivalent (i.e. the vectors v and v′ are equi-distant from the 45◦ line). But under normalization

there is now an important distinction, the higher-valued alternative in each set is scaled more (in

absolute terms) than the lower. Therefore the normalized valuations have a smaller relative ratio

in the higher valued choice set — z(v′) is closer to the 45◦ line than z(v) — leading to increased

choice errors.

A dependence between choice errors and the magnitudes of stimuli — not just their differences

— has been routinely described in the psychology literature for nearly two centuries, codified as

Weber’s Law (Weber 1834, Stevens 1961, Glimcher 2011).11 In our model, such behaviour results

directly from a constrained neural computation. However the departure of choice behaviour from a

purely rational benchmark (of no choice errors) is implemented in a constrained-optimal manner.

Proposition 2 (Divisive Normalization yields as few choice errors as possible). For

any v, z̄, and α> 0 such that αvi ≤ z̄ ∀i, then P1 is maximal when αv = z(v), ω= 1
z̄
, and σ= 0.

The proof is provided graphically in Figure 3. Since Divisive Normalization scales v directly to

the bound constraint, not to some point interior, the distance between the vector z(v) and the

45◦ line is as large as possible. Therefore, given the bound constraint, the probability of making

an error is reduced as much as possible. This result also clarifies the normative implications of β.

When β > 1, normalization maps the vector v to a family of curves that lies outside the linear

constraint. The smallest possible probability of an error occurs when β =∞ and v is mapped to a

square.12

11 Weber’s Law states that the change in a stimulus that will be just noticeable is a constant ratio of the original
stimulus. Said differently, the (objectively measureable) difference between larger stimuli must increase for that
difference to be perceptible to human subjects. Consider Weber’s original experiment. Each subject is given a 1kg
sack of sand, referred to as the reference stimulus, then given a second “test” sack and asked to choose which is
heavier. As the weight of the test sack increases, the likelihood that subjects choose the test sack increases. Now the
experiment is repeated with a 10kg sack. Weber found that the range of weights over which subjects make an error
increases in proportion to the weight of the reference sack.

12 Our focus on choice errors follows the economic literature which has previously used errors as a metric of optimality
(Robson 2001a, Rayo and Becker 2007, Robson and Samuelson 2010). While we do not argue explicitly in terms of
the evolutionary criteria of “expected loss” which incorporates the magnitude of a choice error (Netzer 2009), in the
appendix we show that the general divisive normalization computation does allow a degree of monotonicity in the
transformation of subjective values, such that “more valuable” choice sets (in the sense that αv is more valuable than
v if α> 1) will lead to fewer errors than less valuable choice sets. Of course, a full normative treatment of the neural
decision-making problem would require a complete accounting of the costs of decision-related errors to the chooser
and the metabolic costs of relaxing the constraints we identify — on an evolutionary timescale.
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Figure 3 (Left) Choice stochasticity scales with value of the choice set. (Right) Divisive normalization scales v

to the bound constraint, minimizing choice errors given the bound constraint z̄. Compare the scaling of v to the

bound z̄ versus a scaling to the interior of the bound.

3.1. Substitution Patterns and Violations of IIA

We now consider the patterns in choice behaviour when more alternatives are introduced into the

choice set. Under Divisive Normalization, the neural activity for each alternative is re-scaled to

abide by the bound constraint, proportionate to the value of new alternatives. Figure 4 depicts

this result graphically for the addition of a third alterantive (v3) under the assumption of a linear

constraint (i.e. a simplex in R3
+). As before, the highest-valued alternative is scaled more than the

second, therefore the difference between z1(v) and z2(v) shrinks, and this scaling continues as the

value of the third alternative is increased.

This pattern holds for choice sets of size N . For any choice set with valuations v ∈ RN+ , define

vv ≡ [v, v]∈RN+1
+ as the valuation of a choice set which appends an alternative with valuation v.

Lemma 1. A normalized value function (2) implies |zi(vv′) − zj(vv′)| < |zi(vv) − zj(vv)| <

|zi(v)− zj(v)|, for all i, j ≤N , j 6= i, all v′ > v, and all N .

Proof By definition, v0 = [v,0] is the original vector v, but in RN+1
+ . For any N ≥ 2, and all

elements i, j ≤N ,

|zi(vv′)− zj(vv′)|=

∣∣∣∣∣∣∣
vi− vj

σ+ω
(
v′β +

∑N

n v
β
n

) 1
β

∣∣∣∣∣∣∣
<

∣∣∣∣∣∣∣
vi− vj

σ+ω
(
vβ +

∑N

n v
β
n

) 1
β

∣∣∣∣∣∣∣
= |zi(vv)− zj(vv)|

<

∣∣∣∣∣∣∣
vi− vj

σ+ω
(

0 +
∑N

n v
β
n

) 1
β

∣∣∣∣∣∣∣
= |zi(v0)− zj(v0)|. �
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Figure 4 The introduction of a third alternative scales the valuations via the normalization equation and alters

the relative likelihood of choosing between alternatives 1 and 2. The small circles represent the coordinates of the

normalized vector z(v).

The scaling described in Lemma 1, in which the difference between normalized valuations shrinks,

is a critical feature of Divisive Normalization: it implies a decrease in the odds that alternative

1 is chosen relative to alternative 2 (i.e. the ratio P1
P2

decreases). Therefore substitution patterns

induced by normalization depart from the IIA axiom in a testable manner.

To understand how, consider a model without normalization (i.e. ω = 0 in equation 6). In this

random utility model, substitution patterns are determined by the distribution of the error vector η.

For instance, when ηi follow the independent Gumbel distribution, we have the familiar Multinomial

Logit (MNL) model with Pi = evi∑
n e

vn . The ratio Pi
Pj

= evi−vj does not depend on the valuations

of the additional alternatives in the choice set, therefore satisfies IIA. By contrast, normalization

predicts a decrease in the odds P1
P2

, and this decrease is present even when the error distribution is

Gumbel (see also Figure 5 and Appendix B).

Proposition 3 (IIA Violations - Gumbel). For vi > vj, a normalized value function z(v),

and density function f(ηi) = e−(ηi+e
−ηi ), the introduction of a third alternative v yields relative

choice probabilities Pi(z(vv))

Pj(z(vv))
which decreases in v.

Proof Consider two values of a third alternative, v′ > v. Since vi > vj, then Pi(z(vv))

Pj(z(vv))
=

ezi(vv)−zj(vv) = e|zi(vv)−zj(vv)| < e|zi(vv′ )−zj(vv′ )| =
Pi(z(vv′ ))
Pj(z(vv′ ))

, for all i, j and all v′ > v. �

The patterns of IIA violations predicted by normalization depend on the distributional assump-

tion we place on the stochastic term. If we instead assume an independent normal distribution for

η, the pattern of IIA violations predicted by normalization take a different form (Figure 5). As the

value of a third alternative increases, the ratio P1
P2

still declines, but only until the third alternative

starts capturing significant choice probability. Then the ratio P1
P2

increases and the first alternative

is chosen relatively more often. Given the absence of a closed form for the normal distribution, a
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Figure 5 Simulated choice probabilities from a discrete choice model with and without normalization, as v3 is

varied. The IIA property is denoted by the dashed line.

formal statement along the lines of Proposition 3 is not possible, however intuition for this result

can be found in Figure 4. As the density of u3 shifts to the right, it overlaps substantially with

the density of u2 before that of u1. This sends the probability of choosing the second alternative

quickly to zero, and results in a substitution pattern between alternatives which has a characteristic

“u-shape” (Figure 5).

These behavioural predictions of Divisive Normalization naturally extend to larger choice sets.

In a random utility model, adding new alternatives to the choice set will necessarily decrease the

probability of choosing an existing alternative. This is because a new alternative has a positive

probability of being chosen, no matter how small its value. However in a model with normalization,

there is a second effect to consider. Increasing the number of choice alternatives changes the total

value of the choice set thus requires neural activity to be re-proportioned (Figure 4). This scaling

further depresses the probability of choosing the highest valued alternative and imposes a particular

pattern on the choice probabilities of other alternatives. In section 4.2, we present a new behavioural

experiment designed to test for the presence of normalization as the choice set grows, and to assess

the ability of the normalization model to predict across experiments and subject samples.

3.2. Alternative Models of IIA Violations

Given the predicted substitution patterns of Divisive Normalization, it is important to consider

the predictions of alternative models and how we might distinguish between them. For instance,
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adaptations of the random utility model have been previously proposed in order to relax the IIA

axiom, all working through the specification of the error distribution. Importantly, many of these

alternative approaches are nested in our specification.

Luce Models If ω = 0 and f() is the density of the independent Gumbel distribution, equation

6 reduces to the MNL model with variance proportional to σ2. This model imposes IIA on the

data. If we maintain the Gumbel density but allow ω > 0, the model 6 belongs to the class of “set-

dependent Luce models” (Marley et al. 2008) which relaxes IIA but requires that relative log-odds

ratios are still proportionate across choice sets (Appendix B).

Multinomial Probit If ω = 0 and f() is the multi-variate normal density with a fully-

parameterized covariance matrix, equation 6 is the multinomial Probit model. This flexible spec-

ification has led to the assertion that the MNP can “represent any substitution pattern” (Meyer

1991), though this is clearly too strong of a claim. For instance, substitution patterns which arise

from a relationship between the variances of ηi and the magnitude of valuations in the choice set

can not be captured. Since the lack of a closed-form expression prohibits a definitive statement of

which substitution patterns the MNP can and cannot capture, the ultimate test of its limits will

have to be empirical.

Range Normalization We also consider another class of models which normalize valuations by

the range of alternatives (Padoa-Schioppa 2009, Soltani et al. 2012, Bushong et al. 2016). A Range

Normalization model can implement a bounded value function, provided that the range of valua-

tions is determined by all possible alternatives the decision-maker might encounter. Let V be this

“global” set of valuations (so v ⊆ V), and denote ∆V ≡maxV −minV as the range of this set.

The global range normalization function is then zi(v) ∝ vi
∆V , by which every possible alternative

is normalized on a line between min[V]

∆V and max[V]

∆V . However this form of range normalization has a

substantial empirical drawback. While its value function is bounded, it can not distort valuations

when alternatives are varied within a choice set because ∆V remains fixed over choice sets; when

an alternative v3 is added to the set, the normalized valuations z1(v) and z2(v) do not change.

For a range normalization model to generate substitution patterns, the range of the current

choice set must be used. If we let ∆v≡maxv−minv, then a “local” range normalization function

is zi(v)∝ vi
∆v

.13 This function, however, is not bounded. To see why, consider a binary choice set

in which v1 and v2 are close together. As the range between v1 and v2 shrinks, the normalized

valuations zi(v)→∞. Unboundedness is obviously an unappealing property of a model attempting

to incorporate constraints on the range of neural activity. Nevertheless, we might still consider

the predictions of this unbounded model as additional alternatives are added to the choice set. In

13 Other examples of models which use local range normalization include Wilcox (2011).
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particular, as v3 grows, the range ∆v will shrink, magnifying the difference between z1 and z2. In a

probabilistic model, this will increase the probability that the highest-valued alternative is chosen.

Note that this is the opposite prediction of the value normalization model in Section 3.1.14

There is one additional observation to make about the relationship between a normalization

model and existing models in the literature. If normalization influences choice behaviour, the model

estimates of MNP (or any model without normalization) will be inconsistent. For intuition, it is

helpful to consider normalization as a form of heteroskedasticity in the discrete choice model (6),

in which the variance is modulated by the elements of the choice set. In contrast to linear mod-

els, heteroskedasticity in non-linear discrete choice models yields both inefficient and inconsistent

estimates (Greene 2003). Therefore, if there is indeed normalization present in these datasets,

interpreting the estimates from models that explicitly rule out normalization will be problematic.

This provides further justification for including normalization in the model specification.

4. Choice Experiments

We now turn to the empirical evidence for how valuations are normalized by the choice set. To test

such predictions in a behavioural setting, Louie et al. (2013) developed a two-stage valuation and

choice task over common snack-food items. The first stage of the experiment elicited a willingness-

to-pay (bid) for each item using an incentive-compatible auction mechanism (Becker et al. 1964),

which we denote b = [b1, . . . , bN ]. This yields a measure of value for each item in the experiment

that is taken independently of the other items. In the second stage, subjects then chose a single

alternative from choice sets comprised of subsets of these items. Divisive normalization describes

how valuations are transformed by the choice set, thus predicts substitution patterns between

alternatives when the value and composition of a choice set is varied.

To assess and compare the substitution patterns predicted by Divisive Normalization, Range

Normalization, and other competing models, we analyze both the original dataset from Louie et al.

(2013) for trinary choice sets and present data from a new experiment which varies the size of the

choice set. In both datasets, we aim to test the model using purely behavioural measures, therefore

the incentive compatible bids b are used as an independent measurement of v.15 Recall that our

aim is to assess how valuations, at the time of choice, are transformed by the context of a choice

set via the normalization function z(·). Variation in the independent measures (b) across choice

14 A restricted form of normalization model rectifies the unboundedness problem by setting min[v] = 0 (e.g. González-
Vallejo 2002). This model also provides a link between range normalization and divisive normalization. To see how,
recall that as β→∞, the β-norm converges to a maximization. Therefore zi(v)∝ vi(∑

n v
β
n

) 1
β
→ vi

max[v]
. The divisive

normalization computation therefore simplifies to this restricted form when β is large.

15 In Appendix ??, we assess whether any biases in the independent bids could possibly generate the substitution
patterns we observe. We find that this explanation is highly unlikely given the pattern of bids.
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sets will allow us to examine the substitution patterns that emerge in choice probabilities via z(b),

both non-parametrically and with a structural estimation of the Divisive Normalization model.

A structural analysis is particularly useful because it allows us to compare the Divisive Normal-

ization model to its competitors across experimental designs. One of the benefits of a structural

model is that parameter estimates from one dataset can be used to predict behaviour in another

dataset. If the distribution of subject-level parameters is stable across different samples, and if the

model is indeed an accurate reflection of behaviour, then the normalization parameters from one

dataset should provide a good prediction of behaviour in another dataset. All analyses reported in

this section are novel, unless specifically noted.

4.1. Trinary Choice Experiment

In the original experiment conducted by Louie et al. (2013), 40 healthy volunteers (21 female, ages

mean age 23.0 years) with normal or corrected-to-normal vision participated in the experiment

after giving informed consent. Subjects were instructed to fast for 4h before the experimental

session and informed that they would have to remain for 1h after the completion of the session,

during which the only food they could consume was any food items received from the experiment.

In the first stage of the experiment, each subject performed 60 bid trials to establish subject-

specific valuations for the array of experimental goods. In each bid trial, subjects viewed a picture

of a single snack food item and reported their willingness-to-pay for that item using a mouse-

controlled slider bar ($0-$4 in $0.01 increments). The stimuli consisted of 30 different snack foods

presented as high-resolution color images (110 pixels per inch) on a black background; the full list

of snack foods and two example images are presented in Appendix D. Other than the visual image,

no other information about the snack food was provided to the subject. Items were presented in

randomized order, and each individual item was presented twice.

To implement incentive compatibility, each subject was endowed with $4, and if a bid trial

was chosen for realization at the end of the session, the outcome was determined via an auction

mechanism (Becker et al. 1964).16 Each of 30 items was shown twice in a randomized order, and

multiple bids for the same item were highly correlated (ρ= 0.9105, p < 0.001, Figure 6). For each

subject, each item was then ranked according to its mean bid (Figure 6, Right).

16 Briefly, to realize a bid trial, subjects drew a chip from a bag containing chips numbered from $0 - $4 in $0.10
increments; the drawn number determined the price p of the item in that trial and was compared with the bid b.
If b ≥ p, the subject received the item for the price p; if b < p, the subject paid nothing and did not receive the
item. Thus, it is incentive-compatible for a subject to report their maximal willingness-to-pay because they can not
influence the price. Subjects were carefully informed of this property of the BDM auction in the initial instructions
and practiced it before the actual experiment. At the conclusion of the experiment, a single trial from the session
(bid or choice) was randomly selected for realization and the subject received their choice on that trial. In addition,
each subject received a $40 show-up fee.
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Figure 6 Top Left: The bids for each item and subject. Bottom Left: The correlation coefficient for each

subject. Right: Ranked bids from an example subject.

In the second stage of the experiment, subjects performed choice trials from 250 unique choice

sets composed of three alternatives. Choice trials were presented without a time limit and subjects

were free to select an item as soon as the choice set was displayed; mean trial length was 2.4s, and

each trial was followed by an inter-trial interval consisting of a blank screen for 1-1.5s. Each trinary

set randomly sampled two alternatives from the 10 highest-valued items (termed alternatives ‘1’ &

‘2’ according to their rank order), and one alternative sampled uniformly from the 20 lowest-valued

items (termed alternative ‘3’). Each presented triplet was sampled without replacement and the

location of each item on the screen (left, middle, or right) was randomly assigned in each trial.

Importantly, this process creates substantial variation in the alternatives labelled ‘1’, ‘2’, and ‘3’

on each trial. In fact, on different trials the same item can be labelled a ‘1’ or a ‘2’, depending on

the value of the other alternatives. This provides a strict test of the normalization model since it is

unlikely that other properties of individual items are driving the results, as described in Appendix

??.

For each alternative in the choice set, the mean of the two bids is denoted bi, where i is the

rank-order of that item in a particular set. To facilitate comparison across subjects in the reduced

form analysis, we also report the bid for each item relative to the mean bid for all items (within a

subject) as the variable b̃i. Figure 7 reports the choice probabilities across the deciles of all bids,

as well as a linear fit over all bids. As might be expected, the choice probabilities increase in the

magnitude of the bids.17

4.1.1. Reduced Form Analysis We begin our analysis with a comparison of the observed

choice frequencies across subjects. Due to heterogeneity in preferences, each subject’s bid distribu-

tion for the 30 items varied widely. For some subjects, bids for the items that comprise alternative

17 The weak relationship between b2 and P̂2 is a property of the experimental design. Since b2 < b1 by definition, b1
tends to be larger as b2 increases, limiting any increase in the observed frequency of choosing the 2nd alternative, P̂2.
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Figure 7 The sample choice probabilities of each alternative at the deciles of all bids. A linear fit over all bids

is also depicted.

3 can be close to those for alternatives 1 and 2, while for other subjects, they can be substantially

lower. This across-subject variation provides our first test. Under normalization, we should expect

to see lower odds of choosing alternative 1 vs. 2 for subjects with higher bids for alternative 3.

This is indeed the case. Figure 8 reports the subject-level sample probabilities P̂1, P̂2, P̂3 across

all choice sets, ordered by the average b̃3 of each subject. A linear regression on the probabilities

for each alternative is also depicted. Not only does the choice ratio between alternatives 1 and 2

decrease, but the probability that alternative 2 is chosen (P̂2) increases by ∼ 0.19 as the average b̃3

increases (p < 0.043, two-tailed).18 Across the sample, the ratio in which subjects select the highest

and second-highest alternative decreases by a factor of 2.5 when the value of the third-highest

alternative is increased. Subjects who tended to have higher valued 3rd-ranked items chose their

highest-ranked items nearly 20% less frequently, and chose their second highest-ranked item nearly

15% more often.

Figure 8 The sample choice probabilities of each alternative plotted across subjects by the average b̃3 for each

subject. Subject 20 is depicted as an example.

While an across-subject result is suggestive, the critical prediction is normalization at the trial-

level depending on each subject’s evaluation of the choice set encountered. For instance, note that

18 This result is robust to the two outlier subjects with small average b̃3.
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the above pattern could arise if, by chance, subjects in our sample with a larger average b̃3 also

tend to have smaller value differences between the top two alternatives (b̃1 − b̃2). The Divisive

Normalization model introduced in Section 3 controls for this issue by allowing the choice set on a

given trial to determine the relative choice probabilities. Before we address the performance of this

model however, it is useful to consider an analysis introduced in Louie et al. (2013) which coded

the bid of alternative 3 relative to the mean value of alternatives 1 and 2 on each trial (b3− b1+b2
2

).

This metric alleviates issues with differing bid ranges across subjects by focusing solely on the

composition of the set on each trial. The analysis then dropped the small number of trials in which

alternative 3 was chosen, and a logit choice model was fit to the remaining data segregated into

five bins of (b3− b1+b2
2

). Relative preference is therefore inferred from a binary choice between the

alternatives 1 and 2 (within a bin of alternative 3), controlling for differences in valuations of the

top two alternatives. The magnitude of a logit parameter (the “steepness” of the logistic function)

therefore gives a measure of the ratio P1
P2

at the mean value for b1 − b2. Essentially, this method

assumes that IIA holds “locally” within a bin in order to assess whether it is violated “globally”

over bins.

Figure 9 reports two measures of the probability ratio P1
P2

. The first is the ratio of the raw

sample probabilities over the top two alternatives P̂1

P̂2
, binned over the quintiles of the bids for the

3rd alternative in the set. The second is the main result reported by Louie et al. (2013). In both

analyses, the relative probability of choosing the highest ranked item significantly decreases as the

value of alternative 3 approaches the top two alternatives. There is also evidence for a “u-shape”

in relative choice probabilities; the probability ratio between alternatives 1 and 2 rises as the

third alternative reaches the average fo the top two. This substitution pattern is consistent with

a normalization model with a normal distribution for η, as described in section 3.1. We will now

examine the form of this normalization, whether existing models can also capture it, and whether

it is robust across experimental paradigms.

4.1.2. Estimation Results and Model Comparison — Pooled We now turn to estima-

tion of the Divisive Normalization model introduced in Section 3 and a comparison with three

alternative specifications: the Multinomial Logit (MNL), Multinomial Probit (MNP), and Range

Normalization model defined in Section 3.2. To compare these models, we restate (6) in terms of

the observed bids and with the weights in the normalization pool restricted to be identical (i.e.

ωi = ω).

Pi(b) =

∫
1


 bi− bj
σ+ω

(∑
n b

β
n

) 1
β

> ηj − ηi, ∀j 6= i


f(η)dη. (7)
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Figure 9 (Left) The ratio of the sample probabilities for the top two alternatives, binned over the quintiles of

the third alternative. (Right) The coefficient from a logistic fit of choice between the top two alternatives, over

the range of the third alternative in the set (normalized on each trial), reported by Louie et al. (2013).

This specification (7) has an important property; the parameter ω measures the influence of the

choice set composition on overall variance. Since a null hypothesis of ω = 0 nests the MNP and

MNL, it therefore yields a nested log-likelihood ratio test for the presence of normalization in a

dataset. We begin with a pooled analysis on the full dataset (250 trials × 40 subjects = 10000

observations) and describe each of these models in turn.

Divisive Normalization We estimate three different specifications allowing the variance in the

model to be determined by the value of alternatives in the choice set (i.e. ω≥ 0):

• To verify that substitution patterns in the dataset can be captured solely by Divisive Nor-

malization, we restrict β = 1 and the covariance matrix of η to be independent normal

(parameterized by its Cholesky decomposition: l2,2 = 0.866, l2,1 = 0.5).19 In this specifi-

cation, σ represents the constant portion of the variance, while the term governed by ω

represents the normalized portion of the variance. This is the original model proposed by

Louie et al. (2013).

• To determine the form of Divisive Normalization and how it compares to the MNP, we

relax the restriction on β for a total of three parameters (σ,ω,β). This specification has

the same number of parameters as the MNP.

• Finally, we estimate a full specification that nests both Divisive Normalization and the

MNP. This specification unrestricts the covariance matrix for η parameterized by l2,1, l2,2,

for a total of five parameters (σ,ω,β, l2,1, l2,2).

In each of these specifications, if we find our estimate of ω to be significantly positive, we can

reject a model with constant variance in favour of a model with normalization.20 Model estimates

19 The multivariate normal distribution is parameterized with the constant variance term σ and the Cholesky factor-
ization of the covariance matrix, differenced with respect to the first alternative,

(
1 0
l2,1 l2,2

)
.

20 Each specification is estimated via Maximum Likelihood with bound constraints to ensure that the parameters σ,
ω, and β were non-negative.
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are reported in columns 4-6 of Table 1. In each of the Divisive Normalization specifications, we

find our estimate of ω is significantly greater than zero (p < 0.001, LR test). This suggests that the

composition of the choice set affects the degree of variance in choice behaviour — and therefore the

relative probabilities — in a manner consistent with the normalization model presented in section

3.21

Multinomial Probit To determine whether the MNP can capture the substitution patterns we

observe in this dataset, we also estimated the MNP model (ω = 0, β = 1) with an unrestricted

covariance matrix, for a total of three parameters (σ, l2,1, and l2,2), reported in column 3 of Table 1.

The log-likelihood of the MNP was lower than each of our restricted normalization specifications,

the BIC was higher, and a non-nested likelihood ratio test (Vuong 1989) rejects the MNP in

favour of the three-parameter normalization specification with an independent covariance matrix

(p < 0.001). Not surprisingly, the worst performing specification was the MNL since it imposes IIA.

Range Normalization To estimate the Range Normaliztion model, we replace the divisive nor-

malization term in the denominator of (7) with its counterpart for range normalization that is

“local” to the choice set: σ+ ω(maxb−minb). The baseline specification of this model has two

free parameters, σ and ω, which again govern the constant and normalized portion of the variance,

respectively. We also estimate a full specification with an unrestricted covariance matrix, for a

total of four parameters. The Divisive Normalization specification outperforms both specifications

of the Range Normalization model in terms of a larger log-likelihood and a smaller BIC (columns

9 and 10 of Table 1).

To gauge why the divisive normalization model yields this improvement in fit, we analyzed the

predicted probabilities from each of these models using the reduced form analysis from Louie et al.

(2013). Given the estimates in Table 1 and the bids for each subject, we simulated choice data

from each of the models and conducted the logistic analysis described in Section 4.1.1. The results

are reported in Figure 10. Only the Divisive Normalization model is able to capture the “u-shape”

choice probability ratio observed in the data, with the minimum of this ratio determined by the

magnitude of β. In contrast, both the MNP and and the Range Normalization model predict that

this ratio should increase as the bids for the 3rd alternative increases.

Finally, we used the estimated BIC for each model to approximate the posterior model proba-

bilities across subsets of models (e.g. Wasserman 2000, Hawkins et al. 2015). We considered three

subsets: models which simply allow normalization vs. not (ω = 0 or ω ≥ 0), models which allow

21 To test the importance of the normal density assumption, we also examined a Divisive Normalization model (ω≥ 0)
in which f() is the Gumbel density (not reported in Table 1). We find that ω̂ is significantly different from zero with
a log-likelihood of -7999.58. However it is the worst performing normalization specification, likely due to the fact that
it cannot capture the shape of the P1

P2
ratio (Figure 5).
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Table 1 Estimates of the Divisve Normalization model and alternative specifications for the trinary choice

experiment. Standard errors are in parenthesis. Restricted parameters are in red. A ‘-’ represents parameters not

present in the specification. The reported Posterior Model Probabilities are for i) models which simply allow

normalization vs. not (ω= 0 or ω≥ 0), ii) models which allow different forms of normalization (e.g. β > 0, ωi 6= ω),

iii) models which un-restrict the covariance matrix of η, and iv) all models considered.

MNL Probit MNP Divisive Normalization Range
Symmetric Recurrent Weights Asymmetric Weights Normalization

σ̂ 0.880 0.996 1.493 0.114 0.012 0.121 0.056 0.027 0.439 0.977
(0.036) (0.004) (0.053) (0.024) (0.022) (0.049) (0.026) (0.025) (0.028) (0.100)

ω̂ 0 0 0 0.177 0.412 0.183 0.032 0.214 0.370 0.252
(0.007) (0.014) (0.051) (0.007) (0.045) (0.023) (0.050)

ω̂i - - - - - - 0.177 0.303 - -
(0.003) (0.048)

β̂ 1 1 1 1 25.74 0.723 1 3.458 - -
(0.135) (0.865)

l̂2,2 - 0.866 0.792 0.866 0.866 0.780 0.866 0.866 0.866 0.749
(0.033) (0.044) (0.044)

l̂2,1 - 0.5 0.431 0.5 0.5 0.454 0.5 0.5 0.5 0.513
(0.022) (0.029) (0.030)

LL -8190.54 -8153.55 -7969.81 -7944.39 -7881.25 -7803.86 -7874.29 -7865.20 -8035.61 -7955.42
BIC 16390 16316 15967 15907 15790 15654 15776 15767 16089 15948

LRT of ω̂= 0
0.000 0.000 0.000 0.000 0.000 0.000 0.000

(p-value)
i. Posterior

0.000 1.000 0.000
Model Prob.
ii. Posterior

0.000 0.000 1.000 0.000
Model Prob.
iii. Posterior

0.000 1.000 0.000
Model Prob.
iv. Posterior

0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
Model Prob.

variation in the form of normalization (e.g. β > 0, ωi 6= ω), and models which un-restrict the covari-

ance matrix of η. We also calculated posterior model probability across all models considered.

Given the substantially smaller BIC for the Divisive Normalization model(s) compared to Range

Normalization and the MNP, each of these analyses places a posterior model probability near one

on a Divisive Normalization model.

4.1.3. Asymmetric Recurrent Weights in Normalization There is good reason to believe

that recurrent connections in divisive normalization might be stronger than inhibitory connections

(Carandini et al. 1997, Rust et al. 2006). If this is the case for the normalization of valuations,

relaxing this restriction will result in a better fitting model. Therefore we also considered a Divisive

Normalization specification which allows ωi, the recurrent weight for alternative i, to differ from the

weights for all other alternatives. The estimated specification is given by (7) with the normalization

function replaced by

zi(b) =
bi

σ+
(∑

n 6=iωb
β
n +ωib

β
i

) 1
β

. (8)
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Figure 10 The logistic analysis from Louie et al. (2013), repeated on simulated data given the

parameterizations estimated in Table 1.

A model which unrestricts the recurrent weights may also provide a better estimate of β. If

the recurrent weight ωi is larger than for the inhibitory pool, ω, then the denominator for the 1st

alternative will largely be driven by this maximal value. However a model which artificially restricts

these weights might then yield an estimate for β which is too large. Recall that when ω = ωi, as

β grows large the β-norm approaches a max operator thus closely approximates the normalization

equation zi(b)∝ bi
max[b]

(see Section 3.2).

Indeed, this is what we observe in the estimation results (columns 7 and 8 in Table 1). When

the weights are restricted to be identical (ωi = ω), the estimate of β is significantly larger than 1

(p < 0.001, LR test), therefore the variance in this specification is driven primarily by the highest

valued alternative.22 While a large value for β is not implausible (recall that it simply reflects

the form of the bound constraint on neural activity, thus need not be “computed” in any formal

sense), we should note that the point estimate of β becomes quite imprecise when it is large. This

22 The LR statistic is calculated from the simple normalization model (with β = 1). In the specification with an
unrestricted covariance matrix we cannot reject the hypothesis that β = 1 (p= 0.09, LR Test).
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is because a given change in a large β yields little change in the choice probabilities for a typical

choice set in our experiment, thus little change in the log-likelihood.23

However when this restriction on the weights is relaxed, the denominator for each alternative is

allowed to vary. We find that both the estimate for the recurrent weight is significantly larger than

that of the inhibitory pool (ω̂i > ω̂) and our estimate β̂ = 3.458 now lies within the range typically

observed in sensory systems (a LR test of β = 1 is rejected, p < 0.001). The Log-likelihoods of

these specifications are also larger than the other specifications, save for the full normalization

specification with an unrestricted covariance matrix.

To summarize our results so far, we find the normalization model outperforms both a standard

MNP model and a Range Normalization model in the pooled dataset. Our estimates of ω sug-

gest that normalization is driving the variance of the choice model (therefore the resulting choice

probabilities), and that the weight on the recurrent alternative ωi is larger still. Our estimates on

the form of the normalization constraint suggest that β lies within the realm typically observed in

sensory systems, but estimates becomes less precise as β increases.

4.1.4. Estimation Results and Model Comparison — Modelling Heterogeneity To

assess how well the Divisive Normalization can model the behaviour of a random participant

in our sample, we also considered a random-coefficients specification of equation 7 in which the

normalization parameter for each subject ωs is drawn from the Gamma density g(ωs;a,d) with

shape parameter a and scale d. The probability of observing the sequence {i1, . . . , iT} of T = 250

choices for each subject s is then

∫ T∏

t=1

Pit(b|ωs)g(ωs;a,d) dωs. (9)

The likelihood of observing each sequence for each subject in the sample can then be maximized

using standard simulation techniques (Train 2009). Results from this analysis are reported in Table

2 and the estimated density of ωs for both Divisive Normalization and Range Normalization models

are depicted in Figure 11.

The use of the Gamma distribution is particularly informative because it can place substantial

density on ω= 0 if the shape parameter a is small. For the Divisive Normalization model, we find

that a is significantly different from zero and that the estimated density of ωs places substantial

23 Formally, there is a ridge in the log-likelihood function for values of β larger than ∼ 10, which makes the point
estimate of a large β imprecise. Some intuition can be found in Figure 3. As β varies, there is little change in the
geometric shape implied by normalization (e.g. a normalization boundary just inside the square would imply only a
small change in z1 and z2). This implies only a small change in the resulting choice probabilities as the estimator
varies β. To calculate the standard errors of ω̂ and σ̂ in this specification, we hold β̂ fixed at the reported estimate
which yields a likelihood ratio statistic χ2(LR,1) = 0.05. All reported hypothesis tests on normalization parameters
are based on a likelihood ratio (LR) test statistic, not the reported standard errors.
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Table 2 Random coefficient model estimates for the trinary choice experiment.

Divisive Range
Normalization Normalization

â 1.823 2.115 0.523
(0.355) (0.422) (0.143)

d̂ 0.108 0.1569 0.945
(0.025) (0.050) (0.306)

σ̂ 0.069 0.049 0.397
(0.027) (0.327) (0.021)

β̂ 1 2.208 -
(1.359)

LL -7541.95 -7538.88 -7620.70
BIC 15112 15115 15269

Posterior
0.823 0.177 0.000

Model Prob.
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Figure 11 The Probability Density of ωs ∼Gamma(a, d) estimated from the trinary experiment.

weight on ωs > 0 for both specifications considered (with β = 1 and unrestricted). The estimate of β

is again within the range typically observed in sensory systems. By contrast, the estimated density

for the Range Normalization model places much more weight on ωs = 0. Finally, we find that the

Divisive Normalization specifications have a larger log-likelihood and a smaller BIC compared to

Range Normalization.

4.2. Set Size Experiment

The Divisive Normalization model makes additional predictions about how choice probabilities

should change as the set size increases. An increase in the number of choice alternatives increases

the total value of the choice set, thus re-proportions valuations according to the number of items

in the set (Figure 4). This depresses the probability of choosing the highest-valued alternative

relative to a random utility model. To test for this predicted pattern, we developed a two-stage

experimental design which varies the size of the choice set.
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This experiment also allows us to examine the robustness of our proposed Divisive Normalization

model. One of the benefits of structural estimation is that, in principle, the distributions of struc-

tural parameters should be invariant. We can therefore examine how well the parameters from the

trinary experiment, estimated via the structural specification (7), are able to capture the choice

behaviour of a new set of subjects performing a different experiment.

4.2.1. The Set Size Task Our set size task had a similar structure to the trinary choice

experiment. In the initial valuation stage, 30 subjects (11 female, mean age 24.4 yrs) reported their

maximum willingess-to-pay for 30 individual snack food items, twice each (60 trials total). For each

subject, items were then ranked according to their mean bid value, and the 10 highest-valued and

10 lowest-valued items were selected for inclusion in the second stage of the experiment.

In the second stage, subjects performed 270 choice trials from choice sets of varying sizes. On

each trial t, a choice set consisted of two high-value alternatives (again, denoted alternatives ‘1’

& ‘2’ in rank-order) and a variable number of randomly chosen low-valued items for a total set

size of Nt ∈ {2,4,6,8,10,12} items. Choice sets were constructed to include varying target value

differences, with 45 different trials in each set size condition. On a given trial, item images were

randomly assigned to one of 12 possible locations on the computer screen. Subjects were free to

select an item as soon as the choice set was displayed and there was no time limit for making a

selection; mean trial length was 3.1 s, and each trial was followed by an inter-trial interval consisting

of a blank screen of 1-1.5 s. The remainder of the experimental design, including payment methods,

were identical to the trinary choice experiment.

4.2.2. Estimation Results and Model Comparison — Pooled As expected, increasing

the size of the choice set decreases the probability that the highest ranked alternative is chosen. In

our largest set size of 12 alternatives, this probability decreases by 20% (Figure 12). Of course, any

random utility model will have this qualitative feature. Therefore to determine if this decrease is

better captured by a choice model with normalization, it is crucial to use a structural specification

which controls for the size and valuations of the items in the set. To do so, we estimate the

normalization model (6) with the only difference lying in the number of choice elements, Nt, now

varying over trials. This yields the choice probabilities on trial t,

Pi,t(b) =

∫
1


 bi,t− bj,t
σ+

(∑
n∈Nt−1ωb

β
n,t +ωib

β
i,t

) 1
β

> ηj,t− ηi,t, ∀j 6= i


f(ηt)dηt. (10)

As in the trinary case, we initially restrict ωi = ω to provide a nested hypothesis test of the

standard Probit model. Since the number of alternatives differs over trials, we restrict the covariance

matrix of η to be independent normal. This also allows a direct comparison with the estimates

from the same specification in the trinary experiment reported in Section 4.1.2.
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The resulting maximum likelihood estimates for the entire pooled sample are reported in Table

3 for five nested specifications: the Probit, the simple normalization model proposed by Louie et al.

(2013), a normalization model with β unrestricted, and two specifications which relax restrictions

on ωi. We also estimate a Range Normalization model as in Section 4.1.2.

Table 3 Maximum likelihood estimates for set size experiment. Restricted parameters are denoted in red,

including parameter values taken directly from the trinary experiment in Table 1. The reported Posterior Model

Probabilities are for i) a comparison of Divisive Normalization with the model fits from the trinary experiment,

and ii) all models fit on the set size data.

Probit Divisive Normalization Range
Symmetric Weights Asymmetric Weights From Trinary Normalization

σ̂ 1.210 0.985 0.001 0.022 0.000 0.012 0.027 0.441
(0.016) (0.042) (0.009) (0.011) (0.008) (0.034)

ω̂ 0 0.020 0.442 0.055 0.492 0.412 0.214 0.357
(0.004) (0.075) (0.003) (0.010) (0.019)

ω̂i 0.205 0.460 0.303
(0.056) (0.020)

β̂ 1 1 18.85 1 51.88 25.74 3.458
(7.715) (36.69)

LL -10066.22 -10049.83 -9723.77 -9957.17 -9695.79 -9739.98 -9972.41 -9914.31
BIC 20142 20118 19475 19942 19428 19480 19944 19847

LRT of ω̂= 0
0.000 0.000 0.000 0.000 0.000

(p-value)
i. Posterior

0.000 0.992 0.008
Model Prob.
ii. Posterior

0.000 0.000 0.000 0.000 1.000 0.000
Model Prob.

In each of our Divisive Normalization specifications, we find that the estimate of ω is significantly

different from zero (p < 0.001, LR test). This suggests that we are observing choice behaviour in

which the composition of the choice set affects the degree of variance in the model, and therefore

the relative choice probabilities. The best performing model unrestricts both ωi and β, though

the point estimate of β is again large and relatively imprecise. As in the trinary experiment, the

unrestricted Divisive Normalization models significantly outperform Range Normalization in terms

of log-likelihoods and BIC.

The fitted probabilities over the different choice set sizes are reported in Figure 12. The Divisive

Normalization model captures the sample choice probabilities for all set sizes, with the slight

exception of under-predicting the probability of choosing alternative 3 in large set sizes.24 This is in

24 The increase in the predicted probability of choosing alternative 3 arises from the construction of our choice set.
Alternatives 3-12 were randomly sampled from a set of 10 items, which means that smaller choice sets were more
likely to have a larger disparity between alternative 3 and the remaining alternatives. The slight under-prediction for
large set sizes might result from attentional constraints, or a form of choice set editing, for large choice sets.
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contrast to the Range Normalization and Probit models. While Range Normalization is unable to

capture the change in probability of choosing the highest alternative as the set size increases, the

Probit under-predicts this probability for all set sizes. As a result, for a set size of 12 alternatives,

the highest ranked alternative is chosen 5% more often than predicted by a Range Normalization

model and the Probit model with a constant variance.25
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Figure 12 (Left) The fitted probabilities that alternative 1, 2, 3, & 4 are chosen (from top to bottom), over

the range of choice set sizes. (Right) The out-of-sample predicted probabilities using the estimates from the

trinary experiment.

Finally, we assess the robustness of the Divisive Normalization specification across our two exper-

imental paradigms. Remarkably, the degree of normalization that we observe is largely consistent

with the estimates from the same specification of the trinary experiment (σ̂: 0.001 vs. 0.012; ω̂:

0.442 vs. 0.412; and β̂: 18.85 vs. 25.74). Restricting the model to the parameter estimates from

the trinary experiment yields a slight increase in the log-likelihood (Table 3, second-to-last col-

umn), suggesting that the same normalization parameters can capture the relationship between

the choice probabilities and the composition of the set across the two experiments. To assess this

result, we used the estimated parameters from the trinary experiment to generate predicted choice

probabilities for the choice sets in the set size experiment via equation (10). Figure 12 reports

these out-of-sample predicted probabilities. We should emphasize that these are aggregate predic-

tions conducted on a completely separate sample of subjects from a different experimental paradigm.

25 As noted earlier, interpreting the results from the Probit estimation may be problematic since its estimation is
inconsistent in the presence of Divisive Normalization.
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Notably, the Divisive Normalization model captures the sample choice probabilities for all set sizes,

with the exception of under-predicting the probability of choosing alternative 3 when the set size

becomes very large.

4.2.3. Estimation Results and Model Comparison — Modelling Heterogeneity To

model heterogeneity in the set size sample, we also considered the random-coefficients specification

from (Section 4.1.4), in which the normalization parameter for each subject ωs is drawn from the

Gamma density g(ωs;a,d) with shape parameter a and scale d. Results from this analysis are

reported in Table 4 and the estimated density of ωs for both Divisive Normalization and Range

Normalization models are depicted in Figure 13.

Table 4 Random coefficient model estimates for the set size choice experiment.

Divisive Range
Normalization Normalization

â 0.839 1.400 0.615
(0.028) (0.274) (0.120)

d̂ 0.166 0.346 1.128
(0.123) (0.102) (0.379)

σ̂ 0.163 0.000 0.283
(0.040) (0.024) (0.018)

β̂ 1 4.349 -
(0.6971)

LL -8971.17 -8759.86 -8933.98
BIC 17951 17528 17877

Posterior
0.000 1.000 0.000

Model Prob.

In the case of the Divisive Normalization model, we find that a is significantly different from

zero and that the estimated density of ωs places substantial weight on ωs > 0 for the specification

with β unrestricted. The estimate of β is larger than in the trinary case (4.4349 vs. 2.208), but

only marginally significantly so (p= 0.11) and still within the range typically observed in sensory

systems. The specification which restricts β = 1, however, is summarily rejected. Similarly, the

estimated density for the Range Normalization model places much more weight on ωs = 0. This

model has a smaller log-likelihood and a larger BIC compared to Divisive Normalization with an

unrestricted β.

5. Conclusion

In the study of the human brain and behaviour, it has long been recognized that the biology

of neural systems is both subject to constraints imposed by finite resources, and shaped by the

statistical properties of the environment we live in (Machens et al. 2005, Ganguli and Simoncelli

2014, Wei and Stocker 2017). As a result, the organization and form of neural computation have
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Figure 13 The Probability Density of ωs ∼Gamma(a, d) estimated from the set size experiment.

evolved such that information about the objective world is approximated and/or compressed into

quantities that can be encoded in finite, stochastic, neural activity. A growing number of scholars

are examining what these constraints imply for choice behaviour, and how behavioural theories

can incorporate these insights (e.g. Caplin and Dean 2015, Steiner and Stewart 2016, Hebert and

Woodford 2017, Bhui and Gershman 2018, Noguchi and Stewart 2018, Polania et al. 2019).

In this article, we study the role of a canonical neural computation, Divisive Normalization,

in shaping valuations during the decision-making process in response to a bound constraint on

neural activity. Since Divisive Normalization suppresses, or normalizes, valuations relative to the

composition and size of the choice set, it yields predictions about relative choice probabilities that

depend on the choice set. The effects of this relationship include increased stochasticity compatible

with Weber’s Law, particular patterns of violation of the Independence of Irrelevant Alternatives

axiom, and a decreased likelihood of choosing a higher-valued alternative as the composition of

the choice set is altered. Notably, we also document robustness in the parameter estimates across

paradigms. The structural estimates from an experiment which varies the value of a third alter-

native are very similar to those in an experiment which varies the size of the choice set, and do a

better job of capturing the choice probabilities than a standard Probit and a Range Normalization

model fit in-sample. Such robustness in the structural estimates of preference parameters suggests

that Divisive Normalization may be a basic property of choice behaviour.

We also address the normative role of the relative valuations induced by the divisive normaliza-

tion computation. In sensory systems, normalization has been demonstrated to reduce the resources

required to encode the statistical properties of our natural environment. However its normative

role in decision-making has remained unclear (Louie et al. 2013). The choice behaviour of subjects

in our experiments can be strictly deemed inconsistent or perhaps even welfare-decreasing: the

highest-ranked alternative was chosen less when both the composition and the size of the choice
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set was altered. Why would a neural system – selected over tens of millions of years of evolution –

exhibit such adverse choice performance?

We propose that these patterns in choice behaviour provide evidence for a boundedly rational

decision-making process under neurobiological constraints. Recall that a neurobiological constraint

has two implications: neural activity is both stochastic and bounded. The existence of these con-

straints re-focuses the normative question. How should the brain encode the valuation of choice

alternatives given a neurobiological constraint on the precision and resolution with which it can

encode quantities, and why might this encoding scheme follow the form of Divisive Normaliza-

tion? Our answer is that some degree of normalization is required to compare choice alternatives.

Normalization scales valuations to the boundary of this constraint, preserving relative valuations

and yielding the fewest possible choice errors. Viewed this way, the adverse choice behaviour we

observe is not due to an inefficient or mal-adapted neural architecture, but is in fact an efficient

implementation in response to a neurobiological constraint on value representations.

Understanding the mechanism by which the brain encodes relative quantities can be extended

into other domains of economic choice behaviour. For instance, choice behaviour in the domain

of uncertainty suggests that utilities are determined relative to a reference point (Kahneman and

Tversky 1979), perhaps formed as an endogenous expectation over a history Koszegi and Rabin

(2006). Since the normalization computation scales neural activity relative to the entire choice

set, the static model presented here provides a mechanism for how this expectation is formed

for the current choice set. A dynamic version of the divisive normalization computation explores

implications for behaviour when this expectation is formed over time (LoFaro et al. 2014, Tymula

and Glimcher 2016, Zimmermann et al. 2018). More generally, these insights have been extended

to the multi-attribute domain. Landry and Webb (2019) extend the normalization computation

to address a range of phenomena including well-known decoy effects that rely on a particular

structure of numerically-presented attributes (Huber et al. 1982, Simonson 1989, Tversky 1972).

Related work emphasizes the sequential comparison of attributes relative to a reference sampled

from working memory (Noguchi and Stewart 2018).

All together, our results speak to the role of incorporating insights from biology into economic

discourse. While developing an understanding of the brain is intriguing in its own right, the goal

of neuroeconomic research should be predicting novel patterns in choice behaviour and producing

a normative explanation for the behaviour we observe (Bernheim 2009, Glimcher 2011). We argue

that incorporating divisive normalization into a choice model accomplishes this goal. Our results

emphasize both the positive advances offered by choice models grounded in neuroscience, and the

normative role neurobiological constraints can play in the study of choice.
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Appendix A: The Neurobiology of Sensation, Valuation, and Choice

Some background on the structure of the brain might be helpful for understanding how decision-making is

constrained by neurobiology. The total pool of neurons that make up cortex can be anatomically divided

into non-overlapping subsets of neurons, and each of these “areas” is distinct in structure and organization.

Empirical evidence suggests that any given area serves a limited set of functional roles – which are the same

across individuals – and a small subset of these areas have been identified as having a role in decision-making.

It is essentially required by this logic that devoting more neural resources to these decision-making areas

must balance the benefits of improved decision-making against the costs of allocation those resources to

other functions, such as processing sensory information or managing the heartbeat.

So why is a decision-maker limited in its ability to recruit more neural resources, even if it might be

momentarily advantageous? The reason is that brain areas are distinct in their connections with the rest

of the brain, distinct in their cellular structure, and distinct in many of their biophysical properties. These

specializations, which distinguish different brain areas and make them appropriate for particular functions,

develop over years – primarily over the first 20 years of development – and cannot be altered quickly. This

imposes a significant constraint on the ability of a decision-maker to endogenously allocate neural resources to

a task. For these reasons, we consider the allocation of neural resources to be effectively fixed at a particular

moment in time, at least for the time horizon in which decisions are typically made by an individual.26 In

this appendix, we will review the literature on the neurobiology of sensation, valuation, and choice in the

presence of resource constraints, with particular focus on the Divisive Normalization computation.

A.1. Divisive Normalization in Sensory Systems

A fundamental goal in systems neuroscience is to understand how the brain processes and represents infor-

mation at the level of individual neurons. Much of this work has focused on the sensory domain in which an

environmental stimulus is transduced through the sensory organs and passes through a series of processing

stages (i.e. spatially and functionally distinct networks of neurons), each of which has a particular role. In

the visual system, for instance, photons (which comprise light) make initial contact with photoreceptors in

the retina and this information passes through subsequent stages of hierarchical neural processing in retinal

ganglion cells, the thalamus, primary visual cortex, and so on. Generally speaking, sensory neurons in these

regions are “tuned” for a particular stimulus, for instance the intensity of light in a particular region of visual

space, or a particular direction of motion (e.g. Hubel and Wiesel 1968).

At each of these levels, sensory neurons display activity that cannot be solely explained by linear models

(the activity of a neuron is not simply a weighted sum of the inputs to that neuron). For instance, neural

activity is bounded at high input levels and exhibits the phenomenon of suppression — the neural activity

elicited by a stimulus (for which the neuron is tuned) is reduced in the presence of a stimulus for which it is

26 There is a large literature in neuroscience and psychology which examines the prevalence of errors as a function
of the time spent on a decision, known as the speed/accuracy tradeoff (for a review, see Bogacz et al. 2010). This
literature finds that one can improve accuracy with longer decision times, but that this increase in accuracy is
bounded. The fact that increasing the time devoted to a decision cannot overcome this resource limitation problem
reflects a temporal constraint that has been both widely observed and biologically explained, though is not the subject
of this article.
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not tuned. In the retina, for example, light intensity is encoded relative to the average ambient illumination.

This relative representation of information is observed to be a general feature of sensory coding.

The divisive normalization computation was proposed to explain such nonlinear phenomena in primary

visual cortex (Heeger 1992). The critical feature of the computation is a divisive rescaling of the activity of a

population of neurons by the total activity of a larger pool of neurons. Variations on the form of normalization

have appeared in literature, all nested by the general form,

fi(x1, . . . , xN) = κ
xαi

σ+
(∑N

n=1 ωnx
β
n

) 1
γ

, (11)

where the response fi(x1, . . . , xN) of a population i ∈N is a function of both the driving input xi to that

population and the inputs to the other elements of the normalization pool (Lyu and Simoncelli 2008, Lyu

2011, Sinz and Bethge 2013, Ballé et al. 2016a). This general response function is governed by a number

of parameters: κ denotes the maximum possible activity level, σ determines how responses saturate with

increased driving input, ωn weights each neural population in the normalization pool, and α, β and γ mediate

the form of the normalization.

Divisive Normalization implements several features consistent with how neurons in visual cortex respond

to sensory information. First, because the input to a given neuron is also included in the normalization

pool, the model produces a saturating response to increases in driving input. This is consistent with the

observation that neurons are biologically constrained below a maximum firing rate. Second, division expresses

the quantity encoded by a population of neurons in relative terms, scaled to the pooled activity of other

inputs. Indeed, divisive normalization appears to be a general feature of information processing in cortical

systems (for a review, see Carandini and Heeger 2012). Originally proposed to explain non-linearities in

primary visual cortex, normalization has been identified in multiple stages of visual processing from the

retina to downstream visual areas, and in species ranging from the fruit fly to primates. In addition to vision,

normalization characterizes neural responses in all other sensory modalities, such as audition and olfaction,

and extends to higher-order cognitive processes including attention and multi-sensory integration.27

Given the pervasive observation of divisive normalization in sensory systems, the question of its normative

role in neural coding has been raised. In systems neuroscience, the benchmark normative framework for

information processing is the efficient coding hypothesis (Barlow 1961) based on Shannon’s seminal work

on information transmission via finite capacity channels. Because neural systems face biological constraints

(e.g. maximum firing rates and/or numbers of neurons), the efficient coding hypothesis holds that sensory

stimuli should be represented in a manner that minimizes the redundancy in encoded information; that is,

neural responses should be statistically independent. Crucially, the statistics of the natural environment are

27 We should note that the normalization model describes a computational algorithm rather than a specific biophysical
implementation. Researchers have identified a number of potential neural mechanisms for implementing normalization
and it is likely that the normalization computation is mediated by different processes in different species and systems.
Moreover, since evolution selects on the fitness of the output of a particular neural system, the parametrization of
the normalization equation will depend on the role of the particular system and statistical features of its input. The
widespread occurrence and varying implementations indicate that it is the normalization computation, rather than
the specific mechanism and/or parameterization, which is critical to efficient neural systems.
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decidedly not independent. For instance, regions of visual space with intense light occur in clusters, unlike the

statistically independent “snow” displayed on an un-tuned analog television set. Under the efficient coding

hypothesis, sensory systems should transform information about the natural world into a less redundant

representation by incorporating these dependencies directly in coding algorithms.

Figure 14 In the natural environment, nearby regions of visual space tend to be correlated (left), not

independent (right). When correlated, information on one region can be used to predict information in another,

therefore it is redundant.

While linear weighting functions can remove some redundancies, the statistics of natural images are too

complex for linear models to produce completely independent responses. By contrast, the non-linear divisive

normalization model markedly reduces higher-order correlations in responses to both natural images and

sounds (Schwartz and Simoncelli 2001, Lyu 2011, Sinz and Bethge 2013, Ballé et al. 2016a), and has been

shown to implement near-optimal categorization and encoding of these sensory stimuli (Qamar et al. 2013).

Thus there is compelling evidence that normalization serves a specific normative role in implementing efficient

information coding in sensory systems.

However, this constrained encoding scheme (like all constrained optimal solutions) has consequences. While

the encoding itself is efficient given the constraint, it can still lead to errors in perception, and ultimately,

choice. Consider the image known as the “Checkerboard Illusion” depicted in Figure 15. If required to decide

which of the two regions “A” and “B” appears brighter, one could not be faulted for choosing B. In fact,

the luminance of the two regions is precisely the same. However B appears brighter due to the normalization

computation performed at the level of the retina and visual cortex. The luminance of region B is encoded

relative to nearby locations that fall in a shadow, and is therefore normalized to a lesser extent than A.

Therefore B appears brighter even though it is of the same (objective) luminance, potentially resulting in a

choice error.

A.2. Divisive Normalization of Valuations

The ubiquity of divisive normalization in sensory brain areas, and the general similarity of information

processing in neural systems, suggests that a form of normalization may also be taking place in regions of

cerebral cortex that are involved in decision-making. Recent neural evidence from primates supports this

contention (Rorie et al. 2010, Louie et al. 2011, Pastor-Bernier and Cisek 2011). For example, Louie et al.

(2011) examined the activity of neurons in the LIP area of the monkey brain. The activity of individual

LIP neurons varies with the quantity of the reward associated and is involved in the selection of actions (see
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Figure 15 The “Checkerboard Illusion.” Regions “A” and “B” have equal luminance. [Source] Reproduced

with permission from http://persci.mit.edu/gallery.

Appendix A.3.2). In the Louie et al. (2011) experiment, multiple alternatives were displayed on a screen,

and the value of one alternative (in ml of water) was held constant while the number and value of the

other alternatives were varied. In the absence of normalization, varying the other alternatives should elicit

no change in activity from the neuron which encoded for the constant target. Nonetheless, the measured

neural activity varied inversely with the number and value of the alternatives, consistent with a model in

which the neural activity coding the value of a specific alternative is suppressed by the value of others (see

Figure 16). Furthermore, a simple Divisive Normalization model provides a stronger account of this neural

data than other candidate explanations, suggesting a common form of information coding in sensory and

decision-related neural activity. Such relative value coding is likely to be a common feature of action-selective

decision areas, empirically demonstrated in parietal cortex (Louie et al. 2011, Rorie et al. 2010), dorsal

premotor cortex (Pastor-Bernier and Cisek 2011), striatum (Klein et al. 2017, Wang et al. 2013), and the

superior colliculus (Basso and Wurtz 1997). Reviews of this literature can be found in Seymour and McClure

(2008), Rangel and Clithero (2012), Louie et al. (2015).

A.3. A Two-Stage Model of Valuation and Choice

To examine the role of Divisive Normalization in shaping valuations during choice, we focus on a basic two-

stage decision model in the primate brain. This model is predicated on a distinction between brain regions

that aggregate value information from attributes in an action-independent manner and those that employ

that value information in the process of choice (Platt and Plassmann 2013, Polania et al. 2015). In Figure 17,

we provide a conceptual description of this model. We should emphasize that our focus on the simple two-

stage formulation of valuations and choice is to highlight the role normalization plays in shaping valuations

as they transition between between frontal and parietal regions of the brain during decision-making, not

because the two-stage model is the focus of our exposition. This model can be expanded to allow for multiple

stages of processing with interaction between these stages (e.g. Cisek 2012, Platt and Plassmann 2013, Cai

and Padoa-Schioppa 2014, Hunt and Hayden 2017). Indeed, a recent perspective proposes that information

transitions through multiple levels of processing with a computation akin to Divisive Normalization at each

of these levels (Yoo and Hayden 2018). This flow of information can arise indirectly through other cortical or
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Figure 16 The Louie et al. (2011) experiment in which a monkey is evaluating choice alternatives. Neural

activity is recorded for a constant alternative v1 (grey circle), while the number and value (in µl of water) of the

other alternatives is varied. The average activity (firing rate) of the recorded neurons over the course of the trial

is reported.

sub-cortical structures, therefore does not require direct connectivity between cortical regions (Moisa et al.

2018).

attribute
processing

value
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action
selection

Stage 1

(valuation)

Stage 2

(choice)
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choice (action)

primary 

visual cortex

high-order

visual cortex
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Figure 17 Conceptual Model of Two-Stage Decision Process in the Human Brain. The coloured arrows (left)

reflect the temporal flow of information through these stages (right), rather than direct connectivity. Sub-cortical

pathways are not depicted.
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A.3.1. The First Stage - Value Integration The representation of an integrated value signal in

frontal brain regions is supported by multiple lines of evidence, including anatomical connectivity, neural

activity recordings, and lesion studies. Consistent with a region performing integrative valuation, anatomical

studies document that frontal brain regions receive sensory inputs from visual, auditory, gustatory, olfactory,

and somatosensory systems along with memory systems in perirhinal cortex and hippocampus (Ongür and

Price 2000, Camara et al. 2009, Shadlen and Shohamy 2016).28 Neurophysiological and neuroimaging studies

further support the hypothesis that frontal areas are involved in the integration of value information. Over

200 studies have demonstrated that activity in these brain regions is correlated both with the valuations that

humans place on different items, as well as information about the individual attributes from which those

values are derived (Bartra et al. 2013, Levy and Glimcher 2012, Clithero and Rangel 2013, for reviews).29

Consistent with a representation of integrated value (a neural “common currency”), frontal brain regions

encode multiple aspects of individual rewards such as magnitude, probability, and sensory features (Tremblay

and Schultz 1999, Kennerley and Wallis 2009, Rich and Wallis 2016) and correlate with the willingness-to-

pay of a range of different objects such as food, consumer items, lotteries, and social rewards (Plassmann

et al. 2007, Chib et al. 2009, FitzGerald et al. 2009, Lin et al. 2012). Importantly, information about specific

attributes or good categories is most distinguishable in lateral and ventral regions of orbito-frontal cortex

(Hare et al. 2011a, McNamee et al. 2013, Suzuki et al. 2017), suggesting that attribute-level information is

integrated into a neural representation of value as it transitions towards medial pre-frontal areas. It is these

latter regions which can be used to measure valuations of consumer items in the absence of choice behaviour

(Levy and Glimcher 2011, Smith et al. 2014), and have been shown to correlate with the willingness-to-pay

measured from bidding procedures on consumer goods (Plassmann et al. 2007, Chib et al. 2009).30 In our

model, these valuations are denoted v = [v1, . . . , vN ] for the alternatives {1, . . . ,N} and are measured directly

using a willingness-to-pay procedure.

A.3.2. The Second Stage - Action Selection In the second stage of neurobiological decision-making,

subjective (or constructed) value information is utilized by neural circuits that implement a decision. The

predominant model for this choice process is based on models of perceptual decision-making (Gold and

Shadlen 2007, Cisek and Kalaska 2010, Summerfield and Tsetsos 2012, Shadlen and Kiani 2013), in which

decisions are physically implemented as arm reaches or eye movements, and neural activity is examined in

28 In particular, frontal brain regions receive prominent projections from the amygdala and posterior granular orbital
insula (Porrino et al. 1981, Carmichael and Price 1996), brain regions involved in processing reward information
and olfactory, gustatory and visceral sensory information respectively. Frontal brain regions also send projections to
the ventral striatum, one of the core brain regions identified in functional neuro-imaging studies as representing the
subjective valuation of choice alternatives (Bartra et al. 2013).

29 This evidence extends beyond human fMRI to direct observation of neural activity via electrophysiological record-
ing. Neurons in the monkey orbitofrontal cortex represent the economic value of options at the time of decision
making (Padoa-Schioppa and Assad 2006, Padoa-Schioppa and Conen 2017)

30 In addition, lesion studies in both monkeys (Rudebeck et al. 2017, Izquierdo 2004) and humans (Noonan et al.
2017, Camille et al. 2011) demonstrate that frontal brain regions are necessary for value-guided choice behaviour.
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the relevant brain structures.31 These brain structures typically receive both bottom-up sensory information

and top-down information from frontal brain regions, perhaps indirectly through cortical and sub-cortical

structures like striatum (Polania et al. 2015, Moisa et al. 2018), and are closely related to movement-related

circuits.32 Critically, activity in these brain regions also covary with the values of the rewards associated

with those particular actions, suggesting that this action value information is incorporated into the dynamic

processes that determine choice. However, in contrast to first-stage brain regions, neural activity in second-

stage areas represent the value of actions regardless of the specific attributes that might contribute to value,

and typically do not represent isolated attributes.

For example, when choices are made via eye-movements (a saccade toward a selected alternative), the

activity of saccade-selective neurons covaries with the value associated with the target. Such action values

have been identified in numerous decision-related oculomotor structures including the lateral intra-parietal

area (LIP) (Platt and Glimcher 1999, Sugrue et al. 2004).33 The activity of LIP neurons correlates with the

subjective value of potential saccades, whether this value is determined by sensory contingencies, reward

magnitude and probability, delay discounting, foraging requirements, social information, or strategic valua-

tion in a competitive game.34 Thus, action-selective neurons — that typically project directly or indirectly

to the circuits that implement a particular choice — encode the integrated subjective values of their asso-

ciated actions. A number of recent fMRI studies, performed with human subjects implementing choices on

a keyboard, also suggest that value signals from medial pre-frontal regions are accumulated and compared

during the choice process in dorso-lateral cortex and the intra-parietal sulcus (Basten et al. 2010, Hare et al.

2011b, Domenech et al. 2017). Formally, this process can be modelled by appending a stochastic error term

η= [η1, . . . , ηN ]∈RN to valuations constructed in the first stage as in Equation (3)(Webb 2019).

A.3.3. Summary We are guided to this formulation of a choice model by two key observations from the

neurobiological literature. First, both human-imaging and electrophysiological evidence is consistent with

binary choice decisions being implemented via a stochastic, dynamic, accumulation of value information in

dorso-lateral and parietal cortex. Second, the electrophysiological evidence for divisive normalization in val-

uation tasks has been observed in the same brain regions, suggesting the divisive normalization computation

is implemented prior to, or in conjunction with, this second-stage accumulation. Our aim is to model the

31 In primate experiments, neural activity in orbito-frontal cortex also correlate with value and choice information.
This has led to the hypothesis that decisions can also occur in an action-independent framework, with choices made
between options independent of the particular motor action used to implement choice (Padoa-Schioppa 2011, Cai
and Padoa-Schioppa 2014), or perhaps in conjunction with action-selective regions (Cisek 2012, Padoa-Schioppa and
Conen 2017). Our model of value normalization is consistent with either interpretation, it simply requires a hypothesis
about the brain region in which the normalization computation is operating. The same model would describe goods-
based choice as long as the neurons which actually implement a selection process receive normalized inputs. The
critical hypothesis is that normalization takes place over options regardless of whether the values are coded in an
action-dependent or -independent framework.

32 In particular, decision-related activity has been identified in high-level sensory association areas in parietal cortex,
premotor cortical brain regions, and subcortical structures such as the striatum and superior colliculus.

33 Similar results have been observed in the frontal eye fields (Ding and Hikosaka 2006), the superior colliculus (Ikeda
and Hikosaka 2003), and the caudate nucleus in the striatum (Samejima 2005)

34 Shadlen and Newsome (2001), Roitman and Shadlen (2002), Louie and Glimcher (2010), Platt and Glimcher (1999),
Dorris and Glimcher (2004), Klein et al. (2008), Sugrue et al. (2004)
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transformation of valuations in this second stage. We therefore interpret v as a decision maker’s independent

valuation of a consumer good, however constructed, and study the choice behaviour implied when these

valuations are normalized in the implementation of a decision via z(v) and the stochastic process captured

by η.

Again, we strongly suspect that the brain implements relative coding in earlier stages of the decision-

making process — for instance in the construction of v from objective sensory attributes, perhaps in regions

of orbito- and pre-frontal cortex. Electrophysiological evidence for adaptive coding in orbito-frontal regions

can be found in Padoa-Schioppa (2009). Chau et al. (2014) provide some initial fMRI evidence, though see

Gluth et al. (2016). At the behavioural level, Landry and Webb (2019) and Noguchi and Stewart (2018)

provide reviews of the modelling literature in Economics and Psychology which implement relative coding at

the level of attributes. The interaction of relative coding at multiple stages of the decision-making process,

and how these representations interact to shape the form of context-dependent preferences, remains an

exciting area for further research.
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Appendix B: Closed Form Results for Divisive Normalization

We now explore some formal properties of the Divisive Normalization model when the error density is given

by the Gumbel distribution. The tractability of this distribution yields clear theoretical results for violations

of regularity and membership in the class of set-dependent Luce models (Marley et al. 2008).

B.1. Divisive Normalization and Regularity

First, we find that Divisive Normalization will technically violate the regularity condition for some, but

not all, values and parameterizations of the model. Our proof focuses on the Gumbel distribution since it

has closed-form probabilities. We have not yet characterized the entire range of distributions and range of

valuations for which regularity fails, but extensive simulation suggests it is small.

We begin with a definition of Random Utility. Let Pi,N denote the probability that a subject chooses

alternative i from a finite set N .

Definition 1. (Random Utilities) There exists a random vector U=(U1, . . . ,Un), unique up to an increas-

ing monotone transformation such that for any i∈M ⊆N ,

Pr{Ui ≥Uj ,∀j ∈M}= Pi,M .

A necessary condition for a random utility representation states that the probability of choosing an alter-

native decreases as more alternatives are added to the choice set (Block and Marschak 1959), often referred

to as a regularity condition.

Definition 2. (Regularity) If L⊆M ⊆N ,

Pi,M ≤ Pi,L.

We now show that a model with normalization violates the regularity condition for some parameter values,

therefore cannot be rationalized by a Random Utility model. We consider two choice sets of different sizes, the

three alternative choice set {1,2,3}, with corresponding valuations v1 ≥ v2 ≥ v3 ≥ 0, and the two alternative

subset {1,2}. Since we are assuming a Gumbel distribution, the choice probabilities of the normalized model

are given by the closed form equation,

Pi,M =
e

vi
ω
∑
n∈M vn

∑
m∈M e

vm
ω
∑
n∈M vn

. (12)

We will focus on the probability of choosing the second (ranked) alternative from the set. For our simple

choice sets, these probabilities can be re-written

P2,{1,2,3} =
1

e
v1−v2

ω(v1+v2+v3) + e
v3−v2

ω(v1+v2+v3) + 1
,

and

P2,{1,2} =
1

e
v1−v2

ω(v1+v2) + 1
.

We will show regularity is violated as the choice set is expanded from two to three alternatives.

Proposition 4. There exists some ω̄ > ω
¯
≥ 0 such that the choice probablities:
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1. are Regular for all ω > ω̄, therefore can be represented by Random Utilities.

2. are not Regular for all ω <ω
¯

, therefore cannot be represented by Random Utilities.

Proof Part 1. requires that there is some ω̄≥ 0 such that P2,{1,2,3} <P2,{1,2} if ω > ω̄. Note that P2,{1,2,3} <

P2,{1,2} if and only if

e
v1−v2

ω(v1+v2+v3) + e
v3−v2

ω(v1+v2+v3) + 1> e
v1−v2

ω(v1+v2) + 1

e
v1−v2

ω(v1+v2+v3)
− v1−v2
ω(v1+v2) + e

v3−v2
ω(v1+v2+v3)

− v1−v2
ω(v1+v2) > 1

e
− (v1−v2)v3
ω(v1+v2)(v1+v2+v3) + e

−
v21+v1v2−2v2v3

ω(v1+v2)(v1+v2+v3) > 1.

Since v21 + v1v2 − 2v2v3 > 2v1v3 − 2v2v3 > (v1 − v2)v3 ≥ 0, the above expression is true if

e
−

v21+v1v2−2v2v3
ω(v1+v2)(v1+v2+v3) > 1

2
, or equivalently,

ω >
1

− log( 1
2
)

(
v21 + v1v2− 2v2v3

(v1 + v2)(v1 + v2 + v3)

)
> 0.

Part 2. requires that there is some ω̄ ≥ 0 such that P2,{1,2,3} < P2,{1,2} if ω < ω
¯

. Reversing the inequality

(and argument) from above, P2,{1,2,3} <P2,{1,2} if e
− (v1−v2)v3
ω(v1+v2)(v1+v2+v3) < 1

2
, or equivalently,

ω <
1

− log( 1
2
)

(
(v1− v2)v3

(v1 + v2)(v1 + v2 + v3)

)
> 0.

�

Note that this result has an important qualification, namely regularity violations are only present for

certain values of ω. This means that, for a subject with a given ω, there are only certain subsets of choice

sets in which we should expect to see regularity violations. In particular, these violations will be more likely

when v3 and ω are both small.

B.2. Divisive Normalization and Set-Dependent Luce Models

Marley et al. (2008) introduced a class of set-dependant Luce Models, in which choice can be represented by

a positive scale b(i) and a positive scale φ(M) on choice sets M ⊆N , where

Pi,M =
b(i)φ(M)

∑
n
b(n)φ(M)

.

In particular, such a representation holds if the choice probabilities satisfy two conditions. The first,

originally described by Marley et al. (2008), requires that the choice ratios for any two alternatives vary over

sets by a constant ratio.

Definition 3. Set-Dependent Constant Ratio Rule

log
Pi,L

Pj,L

log
Pi,M

Pj,M

=
log

Pk,L

Pl,L

log
Pk,M

Pl,M

, (13)

for all i, j, k, l ∈L∩M where L⊆N , and M ⊆N .

The second necessary condition imposes monotonicity on the choice probabilities, as noted by Steverson

et al. (2018):

Definition 4. Ordering

Pi,L >Pj,L if and only if Pi,M >Pj,M , (14)

for all i, j ∈L∩M where L⊆N , and M ⊆N .
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It is straightforward to show that a Divisive Normalization model (with Gumbel errors) satisfies both

conditions. Working from equation (12), Divisive Normalization maintains ordering in the choice probabilities

since Pi,M >Pj,M if and only if vi > vj iff and only if Pi,L >Pj,L. Moreover,

log
Pi,L
Pj,L

=
vi− vj

ω
∑

n∈L vn
.

Therefore condition (13) reduces to
ω
∑
n∈M vn

ω
∑
n∈L vn

=
ω
∑
n∈M vn

ω
∑
n∈L vn

, thus is independent of the particular alternatives.
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Appendix C: Within-Subject Estimation Results of Trinary Experiment

The normalization model can also be analyzed at the level of each subject to gauge heterogeneity in context-

dependent choice behaviour. For example, when a subject faces a choice set in which the value of alternative

3 is large, we should expect to see a smaller ratio of alternative 1 chosen relative to alternative 2. A simple

median split of the choice sets (per subject) confirms this intuition. The ratio P̂1

P̂2
is smaller for the upper

median of b3 for 34 of 40 subjects, with 13 of them significantly smaller at the 0.05 level.

Divisive Normalization also yields a prediction about how much context-dependent choice behaviour we

should observe for a given range of choice sets. If v1 and v2 are far apart, or if v3 varies by a lot we should

expect the choice effects of divisive normalization to be strong. In contrast, if v1 and v2 tend to be close

together, or if v3 does not vary by much, then we should expect them to be weak. Therefore heterogeneity

in the distribution of valuations that each subject placed on individual items can be used as an additional

test of the model.

We assessed this prediction with two methods. Figure 18 reports the maximum likelihood point estimates

of the normalization model (7) for each subject. We report the estimate ω̂ multiplied by the average value of

the choice set to give a sense of scale relative to σ̂.35 There is strong evidence for normalization in over half of

the subject sample (21/40 subjects at the 0.10 level, 17/40 subjects at a 0.05 level). However heterogeneity

in the sample is clearly present in these subject-level point estimates, with the model assigning variance to

either σ (red) or to the normalization term governed by ω (blue).

Figure 18 (Left) The point estimates of σ vs. ω for each subject. (Middle) A logistic analysis re-estimated for

sub-samples of subjects. The pooled analysis from Section 4.1.2 is reported in black. (Right) The range of bids

for the set of items (shown for the 3 subjects denoted with an ‘×’ in the left panel). The red polyhedron depicts

the departure of the observed bids (for one subject) from a line between the minimum and maximum bid.

To assess this degree of heterogeneity, we conducted a hierarchical Bayesian analysis which assigns a

probability to each subject belonging to one of two clusters. For each cluster c ∈ 1,2, the normalization

parameters (σ, ω, and β) are each drawn from a Gamma distribution with hyper-parameters ac and dc (scale

35 The statistical significance of the estimate ω̂ is calculated via a likelihood ratio test from the restricted model with
ω= 0.
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and shape, respectively).36 The posterior density of the normalization parameters, for each subject, reflects

the probability that the subject belongs to each of these clusters multiplied by the Gamma density for each

cluster, thus how likely a given parameter value generated the data. Figure 19 reports the posterior density

for ω for each of the subjects. Out of the 40 subjects in the sample, we find that the posteriors place more

weight on ω > 0.05 then on ω < 0.05 for 28 of the 40 subjects (in blue). Moreover, these are also the same

subjects identified via the subject-specific point estimates (corr=0.47, p < 0.002). Notably, the differences

between the clusters arise primarily in the hyper-parameter densities for ω, suggesting that the model is

separating the clusters based on the degree of normalization evident in the choice probabilities (Figure 20).

Figure 19 The posterior density of ω̂, for each subject, estimated via a hierarchical Bayesian analysis. The

posteriors for subjects coded in blue place more density on ω̂ > 0.05 and red place more density on ω̂ < 0.05.

The implications of this heterogeneity in the choice probabilities can be visualized if we repeat the logistic

analysis from Louie et al. (2013) on sub-samples of subjects for which the point estimates ω̂ are significant

or not (Figure 18.B). The subset of subjects which yield a significant ω̂ exhibit a strong contextual effect

36 We conducted analyses with both a uniform prior, and a prior which places substantial density on ω = 0. Results
were similar in both cases, suggesting that the prior has limited effect on the results (we report results for the
“uninformative” prior). The uninformative prior has the benefit of allowing the posterior to be interpreted as the
likelihood, thus providing a conceptual link to frequentist analysis.
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Figure 20 The posterior densities for two clusters of the hyper-parameters (left: scale, right: shape) for the

Gamma Distributions of σ, ω, and β.

on the choice probabilities, in contrast to the remaining subjects in which the effect on choice probabilities

is much weaker. Results are similar both if we split the sample at the 0.10 level and if we split it by the

threshold on posterior densities identified by the hierarchical analysis in Figure 19.

How might this heterogeneity in substitution patterns relate to the underlying bids? In Figure 18.C we

highlight the ordered bids of three subjects, two of which with estimates of ω̂ ≈ 0 (in red). One of these

subjects has a small range of bids for alternative 3 (b3), while the other has a small range of bids for

alternative 1 & 2 (b1, b2), relative to the subject with ω̂ > 0 (in blue). Note that the bid spectrum of this

latter subject has roughly equal range for both distractors and targets, therefore is roughly linear compared

to the subjects with small ω̂.

To test this possible explanation for the heterogeneity we observe in our subject sample, we constructed

a measurement of how much variation is present in valuations of the item set. For each item, we calculated

the square of the difference between the rank-ordered valuations and a line which ranges from the minimum

bid to the maximum bid. A subject for which the target and distractor set shared a similar range would

exhibit a small measurement of variation and a large amount of normalization. A subject for which either the

low-value items or high-value items yielded differing ranges of valuations would exhibit a large measurement

and little normalization. We then averaged this metric over the two subsets of subjects defined by our

regression results, and found it was significantly larger (p = 0.041, two-sample t-test, two-tailed) for those
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subjects which did not exhibit normalization. This suggests that the small estimates of ω̂ we observed for

some subjects resulted from a set of choice alternatives which were not conducive to generating choice set

effects (for those subjects). Put another way, Divisive Normalization predicts that we should not expect to

see choice set effects in those subjects.

Appendix D: Consumer Goods Used in Experiment

Figure 21 Two examples of item images presented to the subject during the experiment.

Table 5 List of Snackfood Items Presented to Subjects

Almond Joy candy bar Haribo Gold-Bears gummi candy Raisinets chocolate raisins
Cashews (whole salted) Jelly Belly jelly beans Reese’s Peanut Butter Cups

Cheez-It baked snack crackers Jujyfruits candy Ritter Sport chocolate bar
Combos baked snacks Kit Kat Extra Crispy candy bar Ruffles potato chips

Cracker Jack (caramel popcorn) Lay’s Barbecue potato chips Smartfood popcorn (white cheddar)
Doritos tortilla chips (cool ranch) Milk Duds (chocolate and caramel) Snickers candy bar
Duke’s beef jerky (teriyaki flavor) M&M’s chocolate candy Sour Patch Kids candy

Frito’s corn chips Oreo cookies Swedish Fish candy
Goldfish baked snack crackers Planter’s Peanut Bar candy bar Toblerone chocolate bar

Goobers chocolate coated peanuts Pringles potato crisps Twizzlers candy
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Ballé J, Laparra V, Simoncelli EP (2016a) Density Modeling of Images using a Generalized Normalization

Transformation. ICLR.
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