
Normalization Principles in Computational Neuroscience

Page 1 of 40

Printed from Oxford Research Encyclopedias, Neuroscience. Under the terms of the licence agreement, an individual user may print 
out a single article for personal use (for details see Privacy Policy and Legal Notice).
date: 27 September 2022

Normalization Principles in Computational Neuroscience
Kenway Louie, New York University, Center for Neural Science and Paul W. Glimcher, New York 
University, Center for Neural Science

https://doi.org/10.1093/acrefore/9780190264086.013.43

Published online: 29 July 2019

Summary
A core question in systems and computational neuroscience is how the brain represents information. Identifying 
principles of information coding in neural circuits is critical to understanding brain organization and function in 
sensory, motor, and cognitive neuroscience. This provides a conceptual bridge between the underlying biophysical 
mechanisms and the ultimate behavioral goals of the organism. Central to this framework is the question of 
computation: what are the relevant representations of input and output, and what algorithms govern the input- 
output transformation? Remarkably, evidence suggests that certain canonical computations exist across different 
circuits, brain regions, and species. Such computations are implemented by different biophysical and network 
mechanisms, indicating that the unifying target of conservation is the algorithmic form of information processing 
rather than the specific biological implementation.

A prime candidate to serve as a canonical computation is divisive normalization, which scales the activity of a given 
neuron by the activity of a larger neuronal pool. This nonlinear transformation introduces an intrinsic contextual 
modulation into information coding, such that the selective response of a neuron to features of the input is scaled 
by other input characteristics. This contextual modulation allows the normalization model to capture a wide array 
of neural and behavioral phenomena not captured by simpler linear models of information processing. The 
generality and flexibility of the normalization model arises from the normalization pool, which allows different 
inputs to directly drive and suppress a given neuron, effectively separating information that drives excitation and 
contextual modulation. Originally proposed to describe responses in early visual cortex, normalization has been 
widely documented in different brain regions, hierarchical levels, and modalities of sensory processing; 
furthermore, recent work shows that the normalization extends to cognitive processes such as attention, 
multisensory integration, and decision making. This ubiquity reinforces the canonical nature of the normalization 
computation and highlights the importance of an algorithmic framework in linking biological mechanism and 
behavior.
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Introduction

Neural Coding and Decoding

A central question in neuroscience is how the brain represents behaviorally relevant information 
(Rieke, Warland, de Ruyter van Steveninck, & Bialek, 1997). Identifying the code by which neural 
systems represent stimulus or movement information was one of principal questions in the 
development of neuroscience as a field. Early pioneering studies on peripheral sensory neurons 
led to the proposal that neurons communicate information via the average frequency of action 
potentials (Adrian, 1926; Adrian & Zotterman, 1926). While this rate code hypothesis still 
underlies much current research in neuroscience, ideas about neural encoding have expanded to 
incorporate more complex characteristics of neural activity such as precise spike timing 
(Hopfield, 1995; Singer & Gray, 1995; Theunissen & Miller, 1995) and correlated activity 
(Averbeck, Latham, & Pouget, 2006; Kohn, Coen-Cagli, Kanitscheider, & Pouget, 2016).

The study of neural encoding—how neural responses represent stimulus, movement, or cognitive 
information—is intricately tied to the study of neural decoding, or how behaviorally relevant 
information can be reconstructed from neural responses. The question of neural decoding is 
important for both theoretical and practical reasons; accurately interpreting decoding is critical 
to understanding neural information processing and cognitive function, but is also a prerequisite 
in the development of neural prosthetic devices (Andersen, Hwang, & Mulliken, 2010; Hochberg 
et al., 2006; Schwartz, Cui, Weber, & Moran, 2006). Examination of both neural coding and 
decoding has grown more sophisticated, driven by ongoing technological developments, such as 
large-scale multineuronal electrophysiological recording and optical imaging techniques, that 
allow high density measurements of neural activity. Given this increased density of neural data 
and the inherent stochasticity in neural activity, growing focus has turned to computational and 
statistical techniques to quantify neural information processing (Paninski, Pillow, & Lewi, 2007; 
Rao, Olshausen, & Lewicki, 2002).

Algorithmic Approach to Neural Information Processing

A focus on Neural Computation is particularly relevant to systems neuroscience, where potential 
levels of analysis span from intracellular biophysics to the level of cognition and behavior 
(Carandini, 2012; Sejnowski, Koch, & Churchland, 1988). An inspiration for this approach is 
Marr’s tri-level hypothesis: a hierarchical framework for thinking about information processing 
systems, which posits different complementary but functionally distinct levels of analysis (Marr, 
1982). In Marr’s proposal, the highest, most abstract level of analysis (the computational level) 
focuses on the goal of a system and the intended problems to be solved. At the other end of the 
spectrum, the lowest level of analysis (the implementation level) encompasses the physical 
realization of the system. Intervening between the two is an intermediate level of analysis (the 
algorithmic level) that describes the relevant representations of input and output, and the 
algorithms governing input-output transformation. An intuitive description is that these levels 
represent how (implementation), what (algorithmic), and why (computational) information is 
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computed; for neural systems, these levels roughly correspond to neurons and neural circuits, 
Neural Computation and encoding/decoding, and the ultimate goals of the organism (metabolic, 
behavioral, or evolutionary) (Carandini, 2012). Note that the term “computation” is broadly used 
in the neuroscience literature, often without explicit definition; most generally, the term refers to 
the process by which a neuron or population of neurons transforms information between inputs 
and outputs, which corresponds most closely to Marr’s intermediate algorithmic level. Perhaps 
the most important takeaway from Marr’s approach is a distinction between biophysical 
implementation and information representation: the information processed by a neural system 
and how it is transformed—and not the specific biological apparatus used to achieve this 
transformation—defines its functional role and link to behavior.

Modularity and Canonical Computations

The growing focus on Neural Computation within neuroscience has led to the proposal that 
certain computations are particularly prevalent, perhaps even ubiquitous, in neural systems 
(Bastos et al., 2012; Carandini, 2012; Carandini & Heeger, 2012; Kouh & Poggio, 2008). Such 
computations are viewed as canonical in nature, performing analogous information processing 
functions in different circuits, brain regions, and species. The proposal for canonical 
computations is motivated, at least in part, by the notion of a canonical microcircuit: a 
characteristic laminar-based architecture of local circuitry widely repeated across cerebral cortex 
(Douglas & Martin, 1991, 2004). The nature of canonical microcircuits highlights two points of 
emphasis relevant to canonical computations: (1) intrinsic connectivity within a circuit— 
including local inhibition as well as excitation—plays a key role in shaping its information 
processing function, and (2) neural systems follow a modular organization. The importance of 
intrinsic connectivity has driven a shift in focus from serial feedforward processing between 
brain areas (Hubel & Wiesel, 1962; Van Essen, Anderson, & Felleman, 1992) to recurrent 
excitation and inhibition within brain areas, which defines the computations performed within 
circuit modules. The modular anatomy of the brain, as emphasized in the cortical microcircuit 
proposal, has led to the corresponding search for computations with similar hallmarks of 
modularity; such computations would perform a core operation, occur repeatedly and widely 
across the brain, be implemented by a variety of circuits and mechanisms, and potentially cascade 
with other computations.

While there is no standard definition for canonical computations, several prominent operations 
stand out as potential candidates (Carandini, 2012; Carandini & Heeger, 2012). One example is 
linear filtering, in which the response of a given neuron can be described as a weighted sum of 
inputs. The classic example of linear filtering is the receptive field, in which sensory neuron 
activity is driven as a linear function of spatiotemporal properties of the stimulus (Hartline, 1940; 
Kuffler, 1953). In addition to characterizing receptive field-driven sensory responses in vision 
(DeAngelis, Ohzawa, & Freeman, 1995; Hubel & Wiesel, 1962), audition (Aertsen & Johannesma, 
1981; deCharms, Blake, & Merzenich, 1998), and somatosensation (Brecht, Roth, & Sakmann, 
2003; DiCarlo & Johnson, 2002), linear filtering—operating on basis functions—may mediate 
higher-order phenomena such as cue integration and sensorimotor transformations (Deneve, 
Latham, & Pouget, 2001; Pouget & Sejnowski, 1997; Pouget & Snyder, 2000). A second candidate 
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canonical computation is the soft thresholding of neural responses. Thresholding is an element of 
many models of spiking activity, describing the nonlinearity inherent in the conversion of input 
currents into action potentials. At the single neuron level, this computation is often assumed to 
be a threshold-linear or power law function (Albrecht & Geisler, 1991; Carandini, 2004; Movshon, 
Thompson, & Tolhurst, 1978), setting the functional operating point of neural systems (Ringach 
& Malone, 2007). However, thresholding can also operate at the level of circuits and networks, for 
example in the recurrent amplification mechanisms underlying action selection and decision 
making (Cisek, 2006; Hanes & Schall, 1996; Roitman & Shadlen, 2002; Wang, 2008). Consistent 
with the modular nature of canonical computations, models that cascade computations like linear 
filtering and soft thresholding together accurately capture neural spike responses (Chichilnisky, 
2001; Simoncelli, Paninski, Pillow, & Schwartz, 2004). In addition to linear filtering and soft 
thresholding, a number of other candidate computations may serve a canonical function 
including coincidence detection, associative learning, predictive coding, and constrained 
trajectories in dynamical systems (Carandini, 2012).

This article focuses on an additional neural operation thought to be a prime candidate for a 
canonical Neural Computation: divisive normalization (Carandini & Heeger, 2012; Louie, 
Glimcher, & Webb, 2015). In normalization, output neural responses reflect both driving, afferent 
input and divisive input from a large pool of other neurons (see “The Divisive Normalization 
Model”). This division implements a form of gain control that allows normalization to capture 
aspects of neural responses unexplained by linear models. Originally proposed to explain 
nonlinear response properties in early visual cortex, normalization has since been found to 
operate widely across different brain regions, sensory modalities, and species (see 
“Normalization in Neural Responses”). Supporting its proposed canonical nature, normalization 
extends beyond early sensory coding to higher order processes including attention (Lee & 
Maunsell, 2009; Reynolds & Heeger, 2009), multisensory integration (Ohshiro, Angelaki, & 
DeAngelis, 2011, 2017), and valuation and decision making (Khaw, Glimcher, & Louie, 2017; Louie, 
Grattan, & Glimcher, 2011; Louie, Khaw, & Glimcher, 2013). In addition to its operation in 
different neural systems, emerging evidence links the normalization process to perceptual and 
choice behavior (see under “Normalization in Behavior”). While some computational functions of 
normalization—such as gain modulation and control of saturation—are evident from its 
formalization, theoretical work has proposed a variety of more complex computational roles such 
as marginalization, invariant coding, and redundancy reduction (see under “Computational 
Functions”). Despite similar computational functions across different neural systems, 
normalization is mediated by a variety of biophysical and circuit mechanisms, consistent with a 
preservation of computational role rather than circuit organization (see under “Biophysical 
Implementation”). The final section briefly overviews current active areas of research on 
normalization, including engineering aspects of implementing normalization-like operations 
into deep neural networks (see “Future Directions”).
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(1)

(2)

The Divisive Normalization Model

Historical Precedent

An early form of divisive normalization was first formally proposed as a computational 
explanation for non-linear response properties of neurons in primary visual cortex (V1) (Heeger, 
1992, 1993). At the time, the predominant models of simple and complex V1 cells were primarily 
linear and feedforward in nature, performing a half-wave rectified linear filtering of stimulus 
information (Campbell, Cooper, & Enroth-Cugell, 1969; Hubel & Wiesel, 1962) or a summing of 
squared outputs of linear filters (Adelson & Bergen, 1985). However, while generally robust in 
descriptive power and empirically easy to fit, these linear (simple cell) and energy (complex cell) 
models failed to capture two characteristics of V1 activity: response saturation and nonspecific 
suppression. First, while visual cortical neurons saturate with increasing stimulus contrast, the 
linear and energy mechanisms predict monotonically increasing responses across all contrasts. 
Second, though visual cortical neurons are driven in a stimulus-specific manner, they exhibit 
nonspecific suppression largely independent of stimulus characteristics (e.g., orientation, spatial 
frequency, spatial location). This nonspecific suppression cannot be easily explained by the linear 
and energy models, which only capture the stimulus properties that drive excitatory responses.

To address the inadequacies of existing models to explain V1 data, Heeger formalized a model 
that combined divisive scaling with the notion of a normalization pool and a form of rectification. 
Divisive scaling was already known to describe how visual cortical responses depend on stimulus 
contrast (i.e., the contrast response function). Specifically, V1 contrast response functions were 
known to be well described by a hyperbolic ratio:

where  denotes the maximal firing rate,  is an exponent controlling the shape of the 
response, and the semisaturation contrast  refers to the contrast that produces half-maximal 
response (Albrecht & Geisler, 1991; Albrecht & Hamilton, 1982; Sclar, Maunsell, & Lennie, 1990). 
Originally applied to describe neural responses in the retinal (Naka & Rushton, 1966), the 
hyperbolic ratio equation describes a saturating function analogous to the Michaelis-Menten 
model for enzyme kinetics (Michaelis, Menten, Johnson, & Goody, 2011). In Heeger’s formulation 
(Heeger, 1993), divisive normalization incorporated a similar hyperbolic form for divisive scaling 
(shown here for simple cells):
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where  is the normalized response of cell ,  is a maximal firing rate, and  is a 
semisaturation constant analogous to the hyperbolic ratio  term. The term  represents a 
linear operator on stimulus information (i.e., a receptive field) followed by a half-squaring and 
can be viewed as the unnormalized response of neuron ; due to this half squaring, the 
normalization model is analogous to a hyperbolic ratio with an exponent of 2. Note that for 
simplicity the linear operator terms  are depicted as static terms, but can be represented as 
functions of time to introduce dynamics into the model. Similar to other previous approaches 
(Albrecht & Geisler, 1991), Heeger’s model combined a linear stage (weighting of stimulus 
information) with a static nonlinearity (half-squaring) and divisive gain control nonlinearity.

The key advance of Heeger’s normalization model was the contribution of a pool of neurons to 
the denominator (Heeger, 1992, 1993; Sawada & Petrov, 2017). In Equation 2, this is represented 
as the summation of  over a large number of neurons  (which typically include neuron , 

providing for a degree of self-inhibition). This pooling provides a natural mechanism for 
estimating stimulus contrast, and its contribution in the denominator implements the hyperbolic 
ratio contrast response function seen in empirical data (Albrecht & Geisler, 1991; Albrecht & 
Hamilton, 1982; Sclar et al., 1990). More importantly, the addition of a normalization pool allows 
different inputs to directly drive and suppress a given neuron, providing separate stimulus 
contributions to excitation and contextual modulation. For example, V1 cells in the normalization 
model will be directly driven by stimuli at a specific orientation and spatial frequency but receive 
divisive suppression from neurons driven by all orientations and a broad range of spatial 
frequencies (Heeger, 1992). This pooled signal allows the normalization model to accurately 
describe nonspecific suppression, where the response to a preferred stimulus is suppressed by the 
superposition of additional stimuli (e.g., cross-orientation suppression); this suppression is 
typically much more nonselective than activation, with broad spatial selectivity, spatial frequency 
tuning, and dependence on orientation (Blakemore & Tobin, 1972; Bonds, 1989; DeAngelis, 
Robson, Ohzawa, & Freeman, 1992). Given flexibility in the definition of the normalization pool, 
the model can also describe additional nonlinear effects in V1 responses including contrast gain 
control, contrast adaptation, and surround suppression.

General Description

The influence of the divisive normalization model in neuroscience is driven by its ability to 
capture a wide array of response phenomena in different systems. The fundamental feature of the 
normalization model—common across different implementations—is a divisive scaling in which 
different inputs contribute as primary afferent drive (numerator) and modulatory control 
(denominator). Variants of the normalization model use different parameterizations and 
terminology (Carandini & Heeger, 2012; Sawada & Petrov, 2017); however, a general equation 
capturing most of the common implementations can be written (Eqn. 1):
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(3)

where the response  of a neuron  is determined by both its direct driving input  and the 
summed inputs to a larger group of neurons denoted by  (often termed the normalization pool, 
and typically including drive to neuron  itself). In the original model of normalization proposed 
to explain nonlinearities in primary visual cortex (Heeger, 1992, 1993), this formulation 
attributes a neuron’s stimulus selectivity to summation (a linear filtering stage in the 
construction of ) and its nonlinear response properties to division (the normalization stage). 
Consistent with this view, the quantities  are often viewed in the sensory literature as properties 
of the stimulus and have units of stimulus intensity; for example, to model suppressive 
phenomena in visual cortical neurons  can be expressed in units of contrast (Carandini, Heeger, 
& Movshon, 1997; Freeman, Durand, Kiper, & Carandini, 2002; Heeger, 1992). Alternatively, 

 can be expressed in units of neural activity in models implementing normalization in neural 
circuits (Beck, Latham, & Pouget, 2011; Kouh & Poggio, 2008; Louie, LoFaro, Webb, & Glimcher, 
2014; Ohshiro et al., 2017).

In addition to its divisive formulation, the normalization model includes a small number of 
parameters contributing to its explanatory power. One parameter is a simple scaling parameter, 
denoted as  in Eqn. 2, that defines the maximum level of activity; because  is typically 
included in both the numerator and denominator, normalization implements a saturating 
function of input drive that approaches . The semisaturation parameter  determines how 
the normalization function responds to driving input, controlling how neural activity approaches 
saturation and the range of inputs that most effectively drive responses. The general effect of the 
semisaturation parameter is evident by examining its direct counterpart (e.g., ) in the 
predecessor hyperbolic ratio model (Eqn. 1); in that simpler model, the term sets the input level 
driving half-maximal output (Albrecht & Hamilton, 1982; Naka & Rushton, 1966). Additionally, a 
nonzero semisaturation term prevents division by zero in the absence of suppressive inputs. The 
exponent  allows for exponential amplification of the driving input and in most models is 
assumed to be the same in the numerator and denominator. Theoretically, the exponent 
represents an expansive nonlinearity in the conversion between input and spiking activity; in the 
original Heeger formulation for visual cortical neurons,  was set to 2 to implement a half- 
squaring. Empirically, the exponent parameter is often fit to neural responses, for example 
yielding values of  between 1.0 and 3.5 with an average value of 2 (with considerable variability 
across neurons) when fitting single V1 neuron spiking activity (Albrecht & Hamilton, 1982; Busse, 
Wade, & Carandini, 2009; Sclar et al., 1990). The parameter  controls the effect baseline 
response of the model; specifically, with no input drive to units in the numerator and 
denominator, the response in Eqn. 1 will be . While not present in many 

implementations, this parameter enables the model to capture divisive effects on spontaneous 
levels of activity in the absence of direct input, such as the contextual suppression of visually 
responsive-neurons in the absence of a stimulus in the receptive field (Louie et al., 2011; Nassi, 
Avery, Cetin, Roe, & Reynolds, 2015). Finally, the parameters  allow for differential weighting 

of individual neuron contributions to the normalization pool. These weights provide for a flexible 
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normalization pool that can be tuned (e.g. to characteristics of the environment) in either in a 
static (Carandini et al., 1997; Ni, Ray, & Maunsell, 2012; Rust, Mante, Simoncelli, & Movshon, 
2006; Schwartz & Simoncelli, 2001) or dynamic (Coen-Cagli, Dayan, & Schwartz, 2012; Coen- 
Cagli, Kohn, & Schwartz, 2015; Westrick, Heeger, & Landy, 2016) manner.

While most applications of the normalization model are static, with a fixed computation and 
varying inputs, newer work has formulated dynamical versions of the normalization model. Such 
models apply differential equations to model the underlying synaptic or firing rate dynamics that 
underlie the normalization computation, and are conceptually related to earlier dynamic models 
of the normalization process (Carandini & Heeger, 1994; Carandini et al., 1997; Mikaelian & 
Simoncelli, 2001; Wilson & Humanski, 1993). For example, recent work implemented a dynamical 
rate model of normalized value coding, using a set of differential equations to model a simple 
circuit of excitatory and inhibitory units in posterior parietal cortex (LoFaro, Louie, Webb, & 
Glimcher, 2014; Louie et al., 2014). This circuit organization implements feedback inhibition via 
recurrent connectivity, a circuit motif thought to underlie normalization in cortical brain regions 
(see “Biophysical Implementation”). At steady state, this dynamical model replicates features of 
context-dependent action value coding observed in monkey parietal neurons and previously 
described by a static normalization model (Louie et al., 2011) (see “Normalization in Higher 
Cognitive Processes”). However, the time-varying nature of the dynamical normalization model 
captures additional novel characteristics of reward-related parietal activity dynamics, including 
value coding during initial onset transients, time-varying value modulation, and delayed onset of 
contextual information. More broadly, recent theoretical work shows that normalization models 
can be derived as the asymptotic solutions to shunting differential equations, which have 
previously been proposed as fundamental models of Neural Computation (Grossberg, 1988). 
Using this approach, dynamical normalization models provide a unified account of attentional 
phenomena related to visual short-term memory including effects on both response time and 
accuracy (Smith, Sewell, & Lilburn, 2015).

Normalization in Neural Responses

Normalization in Sensory Coding

Originally proposed to describe V1 responses, the normalization model captures a number of 
contextual and suppressive phenomena in neural activity along the visual hierarchy (Carandini & 
Heeger, 2012). One of the earliest stages in the visual hierarchy with normalized responses is the 
retina. Retinal photoreceptors receive a vast range of light intensities, both over time and within 
individual visual scenes (Rieke & Rudd, 2009); to accurately encode these varying light intensities 
with a limited dynamic range of neural activity, the retina employs multiple adaptive steps of 
normalization. The first step is light adaptation, which shifts the input-output function 
transforming light intensity to photoreceptor activity according to the local average intensity 
over time (Boynton & Whitten, 1970; Normann & Perlman, 1979; Schneeweis & Schnapf, 1999; 
Shapley & Enroth-Cugell, 1984). This transformation effectively adjusts the sensitivity of the 
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(4)

input-output function to the predominant background light intensity, producing responses that 
represent not light intensity but contrast (deviation from mean light intensity). The 
normalization model describes this adjustment to background light intensity as:

where  represents the light intensity driving a single photoreceptor and  the mean 
background light intensity, with an exponent  equal to 1 (Carandini & Heeger, 2012). The second 
step is contrast gain control, which produces responses in downstream retinal bipolar and 
ganglion cells that represent not contrast but contrast relative to the contrast in surrounding 
spatial locations (Baccus & Meister, 2002; Shapley & Victor, 1978, 1981). Contrast gain control 
produces a number of suppressive phenomena such as contrast saturation, masking, and size 
tuning that can be explained by normalization (Bonin, Mante, & Carandini, 2005, 2006). Differing 
from light adaptation, where the normalization denominator carries a term representing local 
light intensity, normalization underlying contrast gain control divides by a measure of local 
contrast (typically the standard deviation of contrast in a region described by the suppressive 
field). The excitatory and suppressive inputs (  and  in Equation 3) can be defined as the 

weighted sum of contrasts in different spatial locations, capturing the spatial profile of 
empirically measured summation and suppressive fields. Together, light adaptation and contrast 
gain control highlight two descriptive features of the normalization model. First, normalization 
implements a relative form of information transmission, with the appropriate selection of 
denominator terms determining the nature of the contextual representation (e.g., normalization 
to background light intensity versus local contrast). Second, weighted contributions to both 
numerator and denominator input terms allow the normalization model to capture a wide range 
of physiological phenomena. In light adaptation, defining mean intensity as an average over time 
captures history-dependent effects; in contrast gain control, defining inputs a weighting of 
spatial locations captures the differing Gaussian spatial profiles of excitatory and suppressive 
fields.

Beyond the retina, normalization has been observed at multiple cortical areas along the visual 
hierarchy. As discussed above (see section “The Divisive Normalization Model”), normalization 
captures multiple nonlinear response phenomena in V1 neurons. One example is contrast 
saturation, in which firing rates saturate as contrast increases; explaining saturating contrast 
response functions in part motivated the development of the original normalization model as 
well as earlier hyperbolic ratio models. In contrast saturation, firing rates reach different 
asymptotic levels depending on ability of the stimulus to drive the neuron, and thus even at 
saturation neurons maintain orientation tuning (Albrecht & Geisler, 1991; Albrecht & Hamilton, 
1982). Normalization captures this contrast-invariant tuning due to the differential specificities 
of the driving and suppressive inputs (Carandini et al., 1997; Heeger, 1992): the input in the 
numerator is orientation-specific and mediates orientation tuning (at all contrasts), while the 
inputs in the denominator pool over all orientations and drive contrast-dependent suppression 
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and saturation (regardless of the specific stimulus orientation). In addition to contrast 
saturation, normalization also captures a variety of suppressive phenomena in which additional 
stimuli decrease V1 responses to preferred stimuli. In cross-orientation suppression (a specific 
example of nonspecific suppression), the response to an optimally oriented grating is suppressed 
by the superposition of an orthogonally oriented grating in the receptive field (Bonds, 1989; 
DeAngelis et al., 1992; Morrone, Burr, & Maffei, 1982). In surround suppression, responses are 
suppressed by additional visual stimuli in locations surrounding the receptive field (Blakemore & 
Tobin, 1972; Cavanaugh, Bair, & Movshon, 2002b; DeAngelis, Freeman, & Ohzawa, 1994). 
Suppressive stimuli in both cross-orientation and surround suppression decrease responses to 
preferred stimuli, despite eliciting little activity when presented alone—an example of nonlinear 
processing. Normalization accounts for such nonlinear suppression because suppressive stimuli 
contribute selectively to the denominator, due to broader orientation tuning and spatial 
selectivity in the normalization pool (Carandini & Heeger, 2012; Carandini et al., 1997; 
Cavanaugh, Bair, & Movshon, 2002a).

Normalization has been documented in neural responses beyond V1 in both the dorsal and ventral 
visual pathways. Receptive fields are typically larger in these subsequent stages of visual 
processing, consistent with a serial convergence of feedforward inputs, and demonstrate 
stimulus interactions consistent with the normalization model. Along the dorsal pathway, 
neurons in the middle temporal (MT) area are tuned to the direction and speed of motion stimuli. 
When pairs of moving stimuli are placed within the receptive field, MT neurons exhibit 
significantly lower firing rates than the sum of individual stimulus responses (Britten & Heuer, 
1999; Recanzone, Wurtz, & Schwarz, 1997; Xiao, Niu, Wiesner, & Huang, 2014), a nonlinear 
output explained by divisive normalization (Heeger, Simoncelli, & Movshon, 1996; Simoncelli & 
Heeger, 1998). Akin to models in V1, normalization models of MT responses assume that a linear 
weighting of relevant inputs (e.g., direction-selective inputs from V1) determines stimulus 
selectivity, whereas a pooled divisive inhibition determines overall response. The linear 
weighting of relevant V1 inputs allows the model to capture pattern-motion sensitivity 
(Movshon, Adelson, Gizzi, & Newsome, 1985; Rodman & Albright, 1989; Rust et al., 2006), in 
which MT responses reflect the overall motion of a stimulus (i.e., a plaid stimulus composed of 
two gratings) rather than the motion of individual components (i.e., individual gratings). The 
pooled normalization allows the model to capture suppressive effects such as sublinear additivity 
to multiple stimuli and suppression by non-preferred motions. Normalization also describes 
activity in ventral pathway brain regions including V4 and inferotemporal cortex (IT), where 
neurons respond to complex arrays of visual stimulus features and are thought to be crucial for 
object recognition. In these brain areas, feedforward pooling from earlier visual areas generate 
large receptive fields and responses that are generally invariant to stimulus size and position; 
however, neurons show selectivity for higher order features such as object identity. Consistent 
with normalization, responses to preferred stimuli are suppressed by non-preferred stimuli, with 
responses to pairs of objects reflecting the average (rather than the sum) of responses to 
individual objects alone (Kaliukhovich & Vogels, 2016; Ni et al., 2012; Reynolds & Desimone, 2003; 
Zoccolan, Cox, & DiCarlo, 2005). Ventral stream visual areas also exhibit significant modulation 
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by attention, and normalization has been proposed to play a key role in attentional control of 
neural responses (Boynton, 2009; Lee & Maunsell, 2009; Reynolds & Heeger, 2009); see below for 
further discussion under “Normalization in Higher Cognitive Processes.”

While early work on normalization focused on visual processing, normalization also describes 
neural responses in other sensory modalities including olfaction, audition, and somatosensation. 
In olfaction, normalization captures the suppression of odorant-specific neural responses by 
other odorants and provides a mechanism for concentration-invariant olfactory coding. For 
example, in the Drosophila fruitfly, individual second order projection neurons (PNs) in an 
antennal lobe glomerulus receive feedforward excitatory inputs from a subset of olfactory 
receptor neurons, an organization that confers odorant selectivity. PNs also receive additional 
inhibitory lateral inputs from other glomeruli, providing a circuit mechanism for suppression 
with broad odor selectivity (Bargmann, 2006; Olsen & Wilson, 2008). Experiments independently 
manipulating direct and lateral glomerular input confirm that suppression mediates a divisive 
normalization operation (Olsen, Bhandawat, & Wilson, 2010); specifically, these responses can be 
described by Equation 4, with  and  representing feedforward and lateral activity. Because 
odorant concentrations can vary over large orders of magnitude, normalization in olfactory 
coding may be particularly important for maintaining stimulus selectivity and stabilizing 
perceived odor quality in a concentration-independent manner. In the zebrafish olfactory bulb, 
mitral cell odor responses are equalized across broad variations in input intensities, an effect 
driven by a dense network of local interneurons (Zhu, Frank, & Friedrich, 2013). Similar 
normalization mechanisms may mediate concentration-independent odor representations in the 
rat olfactory bulb, where both concentration-invariant odor identity and perceptual similarity are 
better predicted by normalized rather than raw measures of bulbar activity (Cleland, Johnson, 
Leon, & Linster, 2007). Thus, normalization appears to be a common feature of olfactory coding 
in both invertebrate and vertebrate systems, with direct drive generating stimulus selectivity and 
a broadly tuned suppression mediating contextual gain control. Analogous forms of 
normalization exist in auditory and tactile processing, as demonstrated by nonlinear forms of 
spectrotemporal contrast gain control in primary auditory cortex (Rabinowitz, Willmore, 
Schnupp, & King, 2011) and cross-digit suppression in human somatosensory cortex 
hemodynamic responses (Brouwer et al., 2015). In addition to the processing of information in 
individual sensory modalities, normalization describes key features of neural responses in 
multisensory integration (Ohshiro et al., 2011, 2017), suggesting an integral role at both early and 
late stages of sensory coding.

While most of the experiments demonstrating normalization have employed neurophysiological 
recording, functional neuroimaging studies provide additional evidence for normalization in 
human subjects. Because the normalization model is defined by the driving input and 
normalization pool specific to individual neurons (or neuron subpopulations), using functional 
magnetic resonance imaging (fMRI)—which measures the activity of a large number of neurons 
in a given voxel—poses technical challenges to testing the normalization model. One study 
addressed these challenges by examining intra-ocular interactions, taking advantage of the 
broad anatomical organization of monocular and binocular inputs in early visual cortex (Moradi 
& Heeger, 2009). This study found subadditive responses to binocular stimuli, consistent with an 
inter-ocular suppresion driven by divisive normalization. To examine normalization phenomena 
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occuring at a finer grain, later studies used a forward modeling approach that use voxel-wise 
biases to transform activity into predicted channel responses (Brouwer & Heeger, 2009; Kay, 
Naselaris, Prenger, & Gallant, 2008). These studies show that the normalization model captures 
cross-orientation suppression in human visual cortex (Brouwer & Heeger, 2011) and cross-digit 
suppression in human somatosensory cortex (Brouwer et al., 2015). Together, these results 
reinforce the hypothesis that normalization is a widely prevalent computation in sensory 
processing.

Normalization in Higher Cognitive Processes

While most examples of normalization occur in early sensory processing, 21st-century work 
suggests that normalization extends to higher order cognitive processes (Lee & Maunsell, 2009; 
Louie & Glimcher, 2012; Louie et al., 2011; Ohshiro et al., 2011, 2017; Reynolds & Heeger, 2009). 
One example is multisensory integration, evident in brain regions including the superior 
colliculus and dorsal medial superior temporal area (MSTd), which can enhance the perceptual 
detection and discrimination of environmental events (Stein, Stanford, & Rowland, 2014). In 
multisensory integration, neural responses to inputs from multiple sensory modalities display 
characteristic nonlinearities in how that information is combined. Many of these nonlinearities 
arise naturally from a divisive normalization model of multisensory integration (Ohshiro et al., 
2011). In this normalization model, individual neuron responses depend on a weighted sum of 
unisensory inputs (feedforward drive, in the numerator) and a summation over a large 
population of multisensory neurons (pooled normalization signal, in the denominator). These 
(possibly asymmetric) dominance weights are fixed for a given neuron but vary across the 
population of neurons, producing for each neuron a modality-specific excitation and a modality- 
general suppression. This model reproduces several characteristic empirical principles, including 
stronger multisensory enhancement with weak versus strong inputs (principle of inverse 
effectiveness) and the requirement for spatial and temporal congruence of sensory signals to 
generate enhancement versus suppression (spatial/temporal principle). Furthermore, the 
normalization model predicts that a non-preferred sensory input from one modality, which is 
excitatory when presented alone, should suppress the response to a preferred input from another 
modality when cues are combined. This form of cross-modal suppression was subsequently 
verified in monkey MSTd, where neurons integrate visual and vestibular information for self- 
motion (Ohshiro et al., 2017).

Normalization has also been proposed to explain the attentional modulation of neural responses 
in visual brain areas (Boynton, 2009; Ghose & Maunsell, 2008; Lee & Maunsell, 2009; Reynolds, 
Chelazzi, & Desimone, 1999; Reynolds & Heeger, 2009). Attention produces a variety of effects on 
neural responses such as changes in contrast gain (lateral shifts in contrast response functions), 
changes in response gain (multiplicative gain changes in contrast response functions), and 
changes in feature tuning; these various experimental findings have led to multiple, alternative 
theories of attention (Desimone & Duncan, 1995; Martinez-Trujillo & Treue, 2004; McAdams & 
Maunsell, 1999; Moran & Desimone, 1985; Reynolds, Pasternak, & Desimone, 2000; Treue & 
Martinez Trujillo, 1999). Many of these diverse experimental results and theories can be 
explained by normalization-based models of attention. In the most well-known model (Reynolds 
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& Heeger, 2009), neural responses are determined by three primary components: a stimulation 
field, a suppressive field, and an attention field. The stimulation field characterizes a neuron’s 
selectivity for stimulus information (e.g., spatial position and orientation), and captures 
theoretical feedforward driven responses in the absence of attentional and suppressive effects. 
Similar to earlier normalization models of V1, the suppressive field characterizes the typically 
broadly tuned stimuli that drive divisive suppression and effectively normalizes the response of 
one neuron by the activity of a large pool of neurons. The attention field characterizes the effect 
of attention as a function of spatial position and feature information (e.g., orientation) and 
operates multiplicatively on the stimulus drive before normalization. Critically, because attention 
affects both the stimulus drive to a given neuron and the drive to neurons that constitute the 
suppressive pool, attentional modulation influences both the numerator and denominator in the 
normalization model. Thus, in this normalization model, attention reshapes the distribution of 
activity across the population of visual neurons by controlling the relative levels of excitation and 
suppression.

The normalization model of attention derives much of its explanatory power from the relative 
balance of its three components (stimulus drive, suppressive drive, and attentional modulation), 
and their dependence on the size of the visual stimulus and the extent of attention (Reynolds & 
Heeger, 2009). For example, as in simpler normalization models of visual responses without 
attention (Carandini et al., 1997; Cavanaugh et al., 2002a; Heeger, 1992), stimulus size controls 
the relative balance between excitation and suppression: large stimuli encompass a neuron’s 
stimulation field and the larger suppressive field, and drive both excitation and suppression, 
while small stimuli drive strong excitation but relatively weak suppression. In addition, because 
the attention field is also defined as a function of spatial position and visual features (e.g. 
orientation), modulatory effects on neural responses will depend on the spatial extent and 
featural selectivity of attention. This flexibility allows the normalization model to capture 
different experimental results of attention. When the stimulus is small and the attention field is 
large, attention affects the normalization numerator and denominator equally, and the model 
predicts changes in contrast gain. When the stimulus is large and the attention field is small, 
attention primarily affects stimulus drive, and the model predicts changes in response gain. 
When the normalization model is adjusted for specifics of experimental implementation, it 
explains changes in contrast gain (Martinez-Trujillo & Treue, 2002; Reynolds et al., 2000), 
response gain (McAdams & Maunsell, 1999; Treue & Martinez Trujillo, 1999), and results 
intermediate between the two (Williford & Maunsell, 2006). Furthermore, variability in the effect 
of attention across different neurons may be related to variability in individual neuron 
normalization, in particular the strength of tuned normalization (Lee & Maunsell, 2009; Ni & 
Maunsell, 2017; Ni et al., 2012; Ray, Ni, & Maunsell, 2013; Verhoef & Maunsell, 2017). In addition 
to capturing the effects of attention within brain areas, normalization can also explain 
attentional effects across brain areas, such as the attention-driven increase in correlated 
variability between V1 and MT (Ruff, Alberts, & Cohen, 2016; Ruff & Cohen, 2017).

In addition to higher order functions in sensory processing, normalization also plays a key role in 
decision-related neural activity (Louie & Glimcher, 2012; Louie et al., 2015; Rangel & Clithero, 
2012). In particular, normalization appears to define the form of action value information 
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(5)

represented in motor planning circuits, introducing a contextual value coding dependent on the 
composition of the choice set. For example, in the monkey posterior parietal cortex, neural 
activity in the lateral intraparietal area (LIP) specifies individual saccadic eye movements (Gnadt 
& Andersen, 1988; Snyder, Batista, & Andersen, 1997) and covaries with the values associated 
with those actions (Platt & Glimcher, 1999). This value coding is robust to behavioral 
requirements and task design, occurring whether value is determined by sensory information, 
reward magnitude, delay discounting, foraging requirements, social information, or strategic 
interactions (Churchland, Kiani, & Shadlen, 2008; Dorris & Glimcher, 2004; Klein, Deaner, & 
Platt, 2008; Louie & Glimcher, 2010; Platt & Glimcher, 1999; Roitman & Shadlen, 2002; Shadlen & 
Newsome, 2001; Sugrue, Corrado, & Newsome, 2004). Because LIP neurons show little sensory or 
motor-related spiking for spatial locations outside their response field (RF), studies have 
traditionally viewed LIP decision activity in terms of RF saccadic action value. However, recent 
work shows that action value coding in LIP depends on both the value of the saccade target in the 
RF and the value of alternative, extra-RF targets (Louie et al., 2011; Rorie, Gao, McClelland, & 
Newsome, 2010). Specifically, increases in the value of extra-RF targets suppresses LIP activity 
elicited by a given RF target; when no target is available in the RF, extra-RF target values reduce 
LIP activity below baseline levels. Suppression by extra-RF target value, despite these cues 
eliciting little spiking activity when presented alone, represents a nonlinear contextual 
modulation analogous to inhibition by nonpreferred stimuli in visual suppressive effects (see 
“Normalization in Sensory Processes”). This contextual value modulation is well-described by a 
simple divisive normalization function:

where the saccade-selective activity of an LIP neuron  depends on the value  of the RF target, 
divided by a term including the summed value of all available targets (Louie et al., 2011). As in 
sensory forms of normalization, the empirical parameters , , and  govern the maximal 
level of activity, saturation behavior, and baseline firing rates in model responses. This simple 
value normalization model outperforms alternative value representations (e.g., absolute value or 
value difference models) in explaining single neuron and population LIP responses, 
implementing a context-dependent neural representation of value. Consistent with a role in 
decision making, this contextual value representation is linked to spatial and temporal context- 
dependent preferences in monkey and human choice behavior (Khaw et al., 2017; Louie et al., 
2013) (see “Evidence for Normalization in Decision Making”).

Recent studies suggest that relative value coding, accounting for the context defined by the choice 
set and implemented via divisive normalization, is likely a general feature of decision-related 
neural processing. In parietal cortex, LIP activity similarly reflects the relative value of choice 
options whether value is determined by simple reward outcomes (Louie et al., 2011; Rorie et al., 
2010) or more complicated foraging (Sugrue et al., 2004) or game-theoretic (Dorris & Glimcher, 
2004) interactions. Similar to parietal activity during saccadic decision making, reach selective 
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neurons in monkey dorsal premotor cortex encode a relative value signal incorporating the 
rewards of both preferred and nonpreferred arm movements (Pastor-Bernier & Cisek, 2011). 
Furthermore, relative value coding is consistent with previously described effects of choice set 
size and target uncertainty on motor output structures such as the superior colliculus (Basso & 
Wurtz, 1997, 1998), suggesting that normalized value coding occurs in multiple brain regions 
associated with action selection. Evidence also suggests that the brain implements relative 
valuation signals apart from action selection circuits. For example, in the monkey medial 
orbitofrontal cortex, the relative values of risky and safe options in a lottery choice task are 
encoded via a divisive normalization representation (Yamada, Louie, Tymula, & Glimcher, 2018); 
similar normalized value signals during risky choice are also observed in human prefrontal cortex 
hemodynamic responses (Holper et al., 2017). In contrast to value normalization in action 
selection circuits, which is driven by the spatial context defined by the choice set, this valuation 
in frontal brain regions may reflect a relative comparison to the temporal context defined by the 
recent past (Cox & Kable, 2014; Kobayashi, Pinto de Carvalho, & Schultz, 2010; Padoa-Schioppa, 
2009; Tremblay & Schultz, 1999).

Normalization in Behavior

Evidence for Normalization in Perception

While normalization primarily quantifies information coding at the level of neurons and neural 
populations, a separate question of interest is the influence of the normalization algorithm on 
behavior. Because much of the empirical electrophysiological literature focuses on normalization 
in early visual pathways, psychophysical studies of perceptual context effects provide indirect 
evidence for how normalization contributes to visual perception. Such studies generally make 
predictions about the normalized coding of sensory information, adopt a decision rule to 
transform normalized information into choice, and compare model predictions to empirical 
choice behavior. For example, normalization models of surround effects in V1 neurons explain 
aspects of human perception, including simultaneous contrast effects (Xing & Heeger, 2001), 
orientation and spatial frequency dependence (Chubb, Sperling, & Solomon, 1989; Solomon, 
Sperling, & Chubb, 1993), and the timing of suppressive effects (Petrov, Carandini, & McKee, 
2005). Divisive normalization has also been proposed to describe the intracortical interactions 
governing visual salience and explain bottom-up perceptual phenomena such as visual popout 
and visual search asymmetries (Coen-Cagli et al., 2012; Gao & Vasconcelos, 2009; Itti & Koch, 
2000; Li, 2002). In addition, normalization models in sensory processing have been proposed to 
control the competitive interactions that determine visual awareness (Li, Carrasco, & Heeger, 
2015; Ling & Blake, 2012); this competition may be regulated by attention, which can itself be 
described by a normalization mechanism (Boynton, 2009; Ghose & Maunsell, 2008; Lee & 
Maunsell, 2009; Reynolds et al., 1999; Reynolds & Heeger, 2009). Behavior consistent with 
normalized sensory coding also occurs in other sensory modalities. In the Drosophila fruitfly, 
olfactory behavior is well described by a decoding model involving normalization at the level of 
individual glomeruli followed by linear summation over glomerular channels; in addition to 
normal olfactory behavior, the normalization model accurately predicts behavioral responses to 
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the silencing of specific glomerular channels (Badel, Ohta, Tsuchimoto, & Kazama, 2016). While 
these changes in olfactory preference arise from normalization early in sensory processing, they 
suggest that changes in choice behavior may reflect multiple normalization computations at both 
the sensory coding and decision stages.

In addition to behavioral changes linked to normalization in early stages of sensory processing, 
studies suggest that normalization occurs in more abstract, higher order perceptual 
representations. One example is that of numerical quantity, which is represented by neural 
activity in the monkey posterior parietal and prefontal cortices (Nieder, Freedman, & Miller, 
2002; Nieder & Miller, 2003, 2004; Roitman, Brannon, & Platt, 2007). While normalization has 
not been explicitly examined in numerosity coding neural activity, normalization appears to play 
a role in how monkeys combine number information in behavior (Livingstone et al., 2014). 
Monkeys trained to combine different symbolically represented magnitudes show a subadditive 
addition, consistent with a relative evaluation process of number information well described by a 
normalization model. Human estimates of facial attractiveness also demonstrate a dependence 
on contextual factors consistent with a normalization process (Furl, 2016). When human subjects 
are asked to select the most attractive of three presented faces, the relative preference between 
the two most attractive faces decreases with the attractiveness of the third, least attractive face. 
This contextual effect of attractiveness is consistent with a divisive mechanism where the 
attractiveness of each option is scaled by the summed attractiveness of presented faces, 
suggesting that normalization plays a role in high level perception and social evaluation. Note 
that these preferences changes are conceptually similar to changes in value based decision 
making (Louie et al., 2013), and may reflect normalization processes that overlap between higher 
order perception and decision processes (see the section “Evidence for Normalization in Decision 
Making”).

Evidence for Normalization in Decision Making

For valuation and decision processes, normalized value coding instantiates a comparative form of 
valuation, in which potential actions are represented relative to other available alternatives. This 
contextual modulation of value coding, particularly in action selection circuits thought to 
implement decision making, has implications for theoretical models of choice behavior and 
context-dependent preferences (Louie & Glimcher, 2012; Louie et al., 2015; Tymula & Plassmann, 
2016). Traditional normative theories of rational choice in economics, ecology, and psychology 
assume that decisions depend solely on the absolute values of individual choice options (Stephens 
& Krebs, 1986; Von Neumann & Morgenstern, 1944). However, in contrast to these normative 
models, empirical choice behavior in a wide range of species exhibits context-dependence, where 
preference between any two options can depend markedly on additional alternatives (Bateson, 
Healy, & Hurly, 2003; Huber, Payne, & Puto, 1982; Shafir, Waite, & Smith, 2002; Simonson, 1989; 
Tversky, 1972; Tversky & Simonson, 1993). Cognitive models of context-dependent preferences 
—which are irrational from the perspective of normative choice models—have been proposed, 
but the underlying neural mechanisms are unknown.
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Because normalization scales a given option value (in the numerator) by a term incorporating the 
value of other options (in the denominator), normalized value coding naturally generates 
context-dependent choice behavior. Unlike most existing examples of context-dependent 
preferences, normalization predicts contextual dependence based on the integrated value of 
options rather than specific attribute levels and option relationships in a multi-attribute space 
(Louie et al., 2015; Louie et al., 2013). Specifically, the divisive nature of normalization predicts 
that increasing the overall (summed) value of the choice set will decrease the neural firing rates 
representing option values. Given this suppression and the existence of noise in the decision 
process, contextual modulation will preserve the value-ranked order of options but impact the 
discriminability between options. At the level of behavior, simple decision models predict that the 
relative preference between two options in a trinary choice scenario will decrease as the value of a 
third option increases. This effect, which can occur despite the third option never being selected, 
violates a common assumption in rational choice theory known as independence from irrelevant 
alternatives (Luce, 1959). Empirical choice data shows that this form of context-dependent 
choice behavior occurs in both monkey and human decision-making behavior (Itthipuripat, Cha, 
Rangsipat, & Serences, 2015; Louie et al., 2013). Such context-dependence, induced by the 
configuration of the choice set, represents a form of spatial context-dependence analogous to 
surround suppression phenomena in sensory processing.

In addition, recent evidence suggests that value normalization is linked to temporal context 
effects in behavior. When human subjects are asked to report their subjective valuation for 
different food items, individual valuations for the same items depend systematically on the 
recent history of presented values: valuations are suppressed and enhanced by a history of recent 
high and low value items, respectively (Khaw et al., 2017). This temporal dependence can be 
explained by a normalized valuation model incorporating past value information into the 
denominator. Computationally, the effect of past information can be modeled as an effective 
change in the semisaturation term, consistent with normalization models of adaptation in 
sensory neural responses (Heeger, 1992; Sinz & Bethge, 2013; Sit et al., 2009). Normalization- 
mediated value adaptation may underlie a number of well-known behavioral phenomena, 
including successive incentive contrast effects (Crespi, 1942; Flaherty, 1982; Zeaman, 1949) and 
reference-dependent economic choice (Kahneman & Tversky, 1979; Koszegi & Rabin, 2006, 
2007).

Further work will be required to establish the generality of the normalization computation in 
neural valuation and decision-making processes. One open question is the role of normalization 
in multi-attribute choice: While the value normalization model explains contextual choice 
phenomena that depend on option values, the majority of empirical context effects involves 
choices between options that differ along multiple attribute dimensions. Many multi-attribute 
context effects can be explained by computational models employing forms of normalization at 
the attribute coding level (Hunt, Dolan, & Behrens, 2014; Soltani, De Martino, & Camerer, 2012). 
Further research will have to examine whether attribute normalization occurs in neural activity, 
the anatomical locus of such computations, and how different valuation-related normalization 
processes are integrated in the choice process. A second question is the relationship between 
divisive normalization and related models of context-dependent behavior. For example, value- 
related neural activity adapts to the range of recent rewards in monkey orbitofrontal cortex 
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(Kobayashi et al., 2010; Padoa-Schioppa, 2009) and related human brain regions (Cox & Kable, 
2014), and range normalization has been proposed to explain multi-attribute context effects 
(Soltani et al., 2012). In addition to divisive models, contextual choice effects can also be 
explained by subtractive models that implement a precision-weighted prediction error based on 
normative Bayesian theory (Rigoli, Friston, et al., 2016; Rigoli, Mathys, Friston, & Dolan, 2017; 
Rigoli, Rutledge, Dayan, & Dolan, 2016). More broadly, a relative comparison of attribute 
information is an integral component of prominent dynamic models of context-dependent 
choice behavior (Bogacz, Usher, Zhang, & McClelland, 2007; Roe, Busemeyer, & Townsend, 2001; 
Trueblood, Brown, & Heathcote, 2014). Whether these alternative models, and the behavior they 
capture, fit within the normalization framework will require further theoretical and experimental 
work, particularly research identifying the underlying neural mechanisms governing context- 
dependent choice.

Normalization and Clinical Disorders

In addition to explaining aspects of perceptual and decision-making behavior, altered divisive 
normalization and related computational functions are linked to a number of clinical disorders. 
These studies are part of the larger approach of computational psychiatry, a recent concerted 
effort to identify computational modeling frameworks for psychiatric disorders (Huys, Maia, & 
Frank, 2016; Montague, Dolan, Friston, & Dayan, 2012; Wang & Krystal, 2014). Computational 
deficits linked to aberrant normalization are suggested by altered sensory processing in diseases 
including epilepsy (Porciatti, Bonanni, Fiorentini, & Guerrini, 2000; Tsai, Norcia, Ales, & Wade, 
2011), major depression (Bubl et al., 2010; Golomb et al., 2009; Norton et al., 2016), schizophrenia 
(Butler, Silverstein, & Dakin, 2008; Butler et al., 2005; Tadin et al., 2006), and autism (Dakin & 
Frith, 2005; Flevaris & Murray, 2014; Foss-Feig, Tadin, Schauder, & Cascio, 2013; Robertson et al., 
2013). In many of these cases, symptomology includes behavioral deficits in contextual 
phenomena such as surround suppression, suggesting that different genetic-, synaptic-, and 
circuit-level etiologies may manifest as abnormalities in neural gain control. While these 
aberrations in gain control only generally imply a relationship to normalization, recent 
theoretical work has proposed a specific role for normalization in autism; specifically, reduced 
normalization in neural processing may underlie the sensory, cognitive, and social symptoms in 
autism pathology (Rosenberg, Patterson, & Angelaki, 2015). This normalization model is driven 
by the hypothesis that autism involves a disrupted balance of neurophysiological excitatory and 
inhibitory (E/I) activity (Heeger, Behrmann, & Dinstein, 2017; Rubenstein & Merzenich, 2003; 
Yizhar et al., 2011). Genetic, biochemical, and animal model studies suggest an increased E/I ratio 
in autism, which can be modeled as reduced normalization via an increase in excitatory drive 
(numerator), a decrease in suppressive drive (denominator), or both. Network simulations with 
reduced normalization replicate a number of findings in autism, including altered perception and 
statistical inference about the sensory environment; furthermore, reduced normalization is 
broadly consistent with documented autism consequences involving local versus global 
processing, multisensory integration, and decision making (Rosenberg et al., 2015). While the 
reduced normalization is consistent with many symptoms of autism, there is considerable 
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heterogeneity in underlying etiologies and clinical presentation (Heeger et al., 2017; Mullins, 
Fishell, & Tsien, 2016), and the prevalence, extent, and causal role of altered normalization in 
autism are currently unclear.

Computational Functions

Given the different generative mechanisms behind normalization (see section “Biophysical 
Implementation”) and its widespread implementation in different brain areas, cognitive 
processes, and species (see section “Normalization in Neural Responses”), an important question 
is whether divisive normalization serves a single unifying function or different, process-specific 
functions. Theoretical work has proposed a number of functions for normalization, including 
maximizing sensitivity, invariant coding, discrimination, marginalization, winner-take-all 
competition, and redundancy reduction (Carandini & Heeger, 2012). Two of these proposed 
functions—efficient coding and marginalization—are discussed further below, though it is 
important to note that many of these functions are related.

Efficient Coding

A prominent hypothesis in sensory processing is that neural systems face intrinsic information 
capacity constraints and compensate with strategies to maximize coding efficiency (Barlow, 
1961). For single neurons with a constrained range of activity, efficient coding predicts that the 
distribution of responses in a given environment should be uniform over that range; in other 
words, each possible level of neural activity will be used equally (histogram equalization). 
Normalization mediates a number of sensory phenomena, such as light adaptation and contrast 
gain control, which adapt neural response functions in this manner to the distribution of sensory 
inputs. Similar normalization-driven adaptation occurs in neural value coding and choice 
behavior, suggesting that efficient coding principles extend to valuation and decision making 
(Louie & Glimcher, 2012; Louie et al., 2015; Rangel & Clithero, 2012). Because the natural sensory 
environment contains widespread statistical regularities (Geisler, 2008; Simoncelli & Olshausen, 
2001), producing redundant information in sensory inputs, sensory systems can further 
maximize coding efficiency by reducing redundancies in their outputs. For a population of 
neurons, redundancy reduction requires that neural responses should be as statistically 
independent as possible. While linear response properties (e.g., receptive field structure) can 
remove redundancy driven by low order statistics in natural signals (e.g., spatial correlation in 
intensity), they cannot remove higher order statistical dependencies in neural responses (Bethge, 
2006; Simoncelli & Olshausen, 2001). However, these statistical dependencies in natural signals 
can be significantly reduced by divisive normalization (Lyu, 2011; Schwartz & Simoncelli, 2001). 
Furthermore, normalization models—with weights (in the divisive denominator) optimized for 
independence in natural signals—reproduce characteristic response properties of both visual and 
auditory neurons (Averbeck et al., 2006; Schwartz & Simoncelli, 2001). Similar principles operate 
in olfaction: normalization in the Drosophila antennal lobe decorrelates neural responses to 
odors, increasing statistical independence (Luo, Axel, & Abbott, 2010; Olsen et al., 2010).
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Marginalization

Many different types of neural processes involve a form of probabilistic inference called 
marginalization, which recovers the probability distribution of a given variable from a joint 
probability distribution by integrating out (marginalizing over) the other variables. Neural 
Computations implementing marginalization are thought to be involved in diverse tasks 
including olfaction (Grabska-Barwinska et al., 2017; Olsen & Wilson, 2008), object recognition 
(DiCarlo, Zoccolan, & Rust, 2012), coordinate transformation (Pouget & Snyder, 2000), motor 
control (Wolpert, Ghahramani, & Jordan, 1995), decision making (Beck et al., 2008), and causal 
reasoning (Blaisdell, Sawa, Leising, & Waldmann, 2006; Griffiths & Tenenbaum, 2009). While 
marginalization is a conceptually straightforward process, its implementation in neural circuits 
faces a number of challenges: the need to represent probabilistic information, information coding 
in neural population activity, and a potentially large number of nuisance variables. However, 
recent theoretical work shows that biologically plausible circuits with divisive normalization can 
achieve near-optimal marginalization for processes including coordinate transformations, object 
tracking, simplified olfaction, and causal reasoning (Beck et al., 2011). Normalization is 
specifically important when neural activity represents probabilistic information in a logarithmic 
form (e.g., under probabilistic population codes) (Beck et al., 2008; Ma, Beck, Latham, & Pouget, 
2006), since such codes provide for the simple multiplication of probabilities rather than the 
addition of probabilities required for marginalization; it should be noted that normalization is 
less advantageous under alternative coding models where probabilities are directly represented 
(Anastasio, Patton, & Belkacem-Boussaid, 2000; Lee & Mumford, 2003). Normalization-based 
circuits achieve marginalization while representing the full probability distribution of the 
encoded variable, a critical requirement for probabilistic inference (Pouget, Beck, Ma, & Latham, 
2013). Given its role in a wide range of neural processes, marginalization—and its 
implementation via normalization—offers a potential reason for the apparent ubiquity of divisive 
normalization in the brain.

Biophysical Implementation

Apart from computational and coding aspects of normalization, considerable research has 
focused on potential biophysical and network mechanisms responsible for normalization 
computations. Given its ubiquity across different brain regions, hierarchical processing level, and 
species, it is likely that multiple mechanisms can generate normalization-like computations in 
different neural systems (Carandini & Heeger, 2012). Moreover, even within an individual system, 
normalization may arise from multiple mechanisms working in concert and across different 
stages.

One area of focus has been the biophysical mechanism responsible for divisive gain control in 
normalization. Given the suppressive nature of contextual drive in normalization, many studies 
have focused on the role of synaptic inhibition. Early work hypothesized a particular role for 
shunting inhibition (Carandini & Heeger, 1994; Carandini et al., 1997), which affects membrane 
conductance rather than voltage and has a divisive effect of excitatory potential amplitudes 
(Silver, 2010). Shunting inhibition is consistent with some forms of normalization the retina and 
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primary visual cortex but increases in membrane conductance and the strength of normalization 
are not always coupled in the manner predicted by shunting inhibition (Carandini & Heeger, 
2012). More generally, inhibition is clearly linked to normalization in some systems, including 
olfactory circuits in the Drosophila antennal lobe (Olsen et al., 2010; Olsen & Wilson, 2008) and 
zebrafish olfactory bulb (Zhu et al., 2013). However, some normalization-mediated phenomena— 
including contrast saturation, cross-orientation suppression, and surround suppression in visual 
cortex—appear to be unaffected by GABA  receptor blockade (Katzner, Busse, & Carandini, 2011; 
Ozeki et al., 2004), suggesting that they do not rely on inhibition. As an alternative to inhibition, 
other work has suggested that normalization arises from a decrease in excitation. Employing 
optogenetic activation and intracellular recording, recent work shows that normalization driven 
by distal inputs to mouse visual cortex is mediated by decreased synaptic excitation (Sato, Haider, 
Hausser, & Carandini, 2016). These results are consistent with network models with strong local 
recurrence, which posit that changes in excitation and inhibition may occur together in 
normalization (Ozeki et al., 2009; Rubin, Van Hooser, & Miller, 2015; Shushruth et al., 2012). In 
such circuits, excitation and inhibition are thought to be tightly coupled, and inputs that drive 
normalization (e.g., surround stimuli in surround suppression) act by suppression of local rather 
than afferent excitatory drive. Notably, different biophysical normalization mechanisms may be 
linked to differences in circuit architecture: increased inhibition plays a role in simpler circuits 
without strong recurrent connectivity (Olsen et al., 2010; Olsen & Wilson, 2008; Zhu et al., 2013), 
whereas reduced excitation (via E/I balance mechanisms) seems more prevalent in dense, 
recurrent circuits in cortical areas.

Related to the question of biophysical mechanism is the question of the network architectures 
that can generate divisive normalization. At its core (see section “The Divisive Normalization 
Model”), normalization involves an interaction between afferent drive (numerator) and 
suppressive modulatory control (denominator). When driving and suppressive input show similar 
selectivity and origin (e.g., for the same region of visual space, as in cross-orientation 
suppression), normalization can be potentially explained by synaptic mechanisms such as 
synaptic depression (Abbott, Varela, Sen, & Nelson, 1997; Carandini, Heeger, & Senn, 2002). Such 
forms of normalization may also be implemented by a feedforward inhibition circuit, where 
driving and suppressive inputs arise from the same upstream brain area. Because both inputs are 
feedforward, an attractive characteristic of this circuit mechanism is that these signals are not yet 
normalized, as described in the standard normalization equation (Carandini & Heeger, 2012). 
However, normalization can also be implemented by a feedback circuit, with suppressive input 
arriving from lateral or top-down afferents (Carandini & Heeger, 1994; Carandini et al., 1997; 
Heeger, 1992). A feedback circuit for normalization is generally assumed to play a role in cortical 
circuits, which display extensive recurrent connectivity; feedback circuits may play a particularly 
important role when suppressive signals in the normalization pool represent a larger stimulus 
context than the driving input (e.g., surround suppression). Empirical evidence suggests that 
both feedback and feedforward circuits can generate divisive normalization, and that the circuit 
organization is different in different systems. For example, feedforward inhibition via lateral 
connections generates normalization in the fruitfly olfactory system (Olsen et al., 2010; Olsen & 
Wilson, 2008). In cortical circuits, such as the mammalian visual cortex, feedback inhibition via 
lateral or top-down inputs appears to play a larger role in normalization-mediated gain control 
(Angelucci & Bressloff, 2006; Angelucci, Levitt, & Lund, 2002; Carandini & Heeger, 1994; 

A
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Carandini et al., 1997; Nassi, Gomez-Laberge, Kreiman, & Born, 2014; Nassi, Lomber, & Born, 
2013; Reynaud, Masson, & Chavane, 2012). Recent optogenetic manipulations studies suggest that 
local circuitry play a causal role in normalization, consistent with a feedback mechanism (Nassi 
et al., 2015; Sato, Hausser, & Carandini, 2014). For example, superficial layer somatostatin- 
expressing inhibitory neurons, likely driven by horizontal inputs, contribute to surround 
suppression in the rodent visual cortex (Adesnik, Bruns, Taniguchi, Huang, & Scanziani, 2012; 
Adesnik & Scanziani, 2010); an important open question is whether this circuit mechanism 
generalizes to other species. Ultimately, the issues of biophysical and circuit mechanisms of 
normalization are tightly linked and underscore the variety of implementations used by different 
systems to generate the normalization computation.

Future Directions

Given its ubiquity in neural information coding, the divisive normalization model continues to be 
applied in a growing number of different directions. One area of active research is extending the 
standard formalization of the normalization model, with a focus on denominator normalization 
weights that actively adjust to the environment. In most standard applications of the 
normalization model, normalization weights are either assumed to be equal for all suppressive 
inputs or asymmetric but fixed (often fit to empirical data). However, recent work suggests that 
normalization can be implemented in a flexible manner consistent with a dynamic adjustment of 
normalization weights. For example, surround suppression in visual cortical neurons can vary 
substantially depending on the image; this variability is not explained by standard models but can 
be captured by a normalization model where the strength of divisive suppression depends on the 
statistical homogeneity in the image (Coen-Cagli et al., 2015). This gating by sensory statistics is 
consistent with the notion that normalization-mediated processes such as surround suppression 
are important for efficient coding, removing regularity induced redundancies in sensory 
information (Coen-Cagli et al., 2012; Schwartz & Simoncelli, 2001; Vinje & Gallant, 2002). 
Dynamic adjustment of normalization weights have also been proposed to explain adaptation in 
visual cortical neurons, where extended presentation of oriented stimuli produces suppression 
for neurons tuned for the adapter and a repulsive shift of tuning curves away from the adapter 
(Snow, Coen-Cagli, & Schwartz, 2016; Wainwright, Schwartz, & Simoncelli, 2002; Westrick et al., 
2016). These characteristic changes are explained by a normalization model with dynamically 
changing weights, using a simple Hebbian learning rule to adjust the strength of normalization 
between neurons based on past stimulus-driven response patterns.

Finally, while the focus of this article has been on the normalization computation in 
neuroscience, there is growing application of divisive normalization principles in software 
engineering. One ongoing application is image quality assessment: quantifying image distortion 
in a manner similar to subjective human evaluation is crucial to image compression, rendering, 
and enhancement. Because normalization captures nonlinearities intrinsic to biological vision, 
normalization-based algorithms have shown promise as a means to predict subjective image 
distortion (Laparra, Berardino, Balle, & Simoncelli, 2017; Laparra, Munoz-Mari, & Malo, 2010; 
Lyu & Simoncelli, 2008; Malo, Epifanio, Navarro, & Simoncelli, 2006; Teo & Heeger, 1994). 
Another developing application of normalization is in the engineering of deep neural networks— 
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artificial neural networks with multiple hidden layers between input and output—increasingly 
used in machine learning and artificial intelligence (Hassabis, Kumaran, Summerfield, & 
Botvinick, 2017; LeCun, Bengio, & Hinton, 2015). General forms of normalization, such as batch 
normalization (Ioffe & Szegedy, 2015) and layer normalization (Ba, Kiros, & Hinton, 2016), are 
widely employed in deep networks to increase network stability, speed learning, and improve 
performance. More recent approaches have begun to employ forms of divisive normalization, 
where unit activations are normalized by neighboring activations within a layer (Jarrett, 
Kavukcuoglu, & LeCun, 2009; Krizhevsky, Sutskever, & Hinton, 2012), and generalizing and 
improving divisive normalization algorithms in deep networks continues to be an active area of 
research (Giraldo & Schwartz, 2018; Ren, Liao, Urtasun, Sinz, & Zemel, 2016). While current 
applications of divisive normalization in deep networks are primarily focused on improving 
performance, and thus represents the use of biological principles to inform engineering, the 
examination of regimes in which neural networks can match neurophysiological data and human 
performance may also inform a deeper understanding of neural organization and function 
(Yamins & DiCarlo, 2016; Yamins et al., 2014).
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