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Abstract

Measuring temporal discounting through the use of intertemporal choice tasks is now the

gold standard method for quantifying human choice impulsivity (impatience) in neurosci-

ence, psychology, behavioral economics, public health and computational psychiatry. A

recent area of growing interest is individual differences in discounting levels, as these may

predispose to (or protect from) mental health disorders, addictive behaviors, and other dis-

eases. At the same time, more and more studies have been dedicated to the quantification

of individual attitudes towards risk, which have been measured in many clinical and non-clin-

ical populations using closely related techniques. Economists have pointed to interactions

between measurements of time preferences and risk preferences that may distort estima-

tions of the discount rate. However, although becoming standard practice in economics, dis-

count rates and risk preferences are rarely measured simultaneously in the same subjects

in other fields, and the magnitude of the imposed distortion is unknown in the assessment of

individual differences. Here, we show that standard models of temporal discounting —such

as a hyperbolic discounting model widely present in the literature which fails to account for

risk attitudes in the estimation of discount rates— result in a large and systematic pattern of

bias in estimated discounting parameters. This can lead to the spurious attribution of differ-

ences in impulsivity between individuals when in fact differences in risk attitudes account for

observed behavioral differences. We advance a model which, when applied to standard

choice tasks typically used in psychology and neuroscience, provides both a better fit to the

data and successfully de-correlates risk and impulsivity parameters. This results in mea-

sures that are more accurate and thus of greater utility to the many fields interested in indi-

vidual differences in impulsivity.

Introduction

Time preference, or the preference of typical humans for immediate over delayed rewards, has

long been a subject of study in economics, finance, neuroscience, and psychology. Temporal

discounting describes this preference mathematically by quantifying how the subjective value

of a payoff decreases as the time to its receipt increases. This delay-dependent decrease in
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subjective value is captured in models with diverse functional forms, with time preference typi-

cally summarized as a discount rate or discount parameter. The two most widely used func-

tional forms are the exponential and the hyperbolic classes of models. Exponential discounting

is derived from economic theory and assumes a constant rate of discounting at every time

period. Hyperbolic forms are favored in psychology and neuroscience, as they can fit empirical

data better [1, 2], exhibiting steeper discounting for near-future outcomes and shallower dis-

counting of far-future payoffs, an inconsistency referred to as “present bias” [3]. More recently,

psychologists have related this time preference to the multidimensional construct of impulsiv-

ity [4, 5]. Scholars of impulsivity have converged to a taxonomy that divides it into action and

choice impulsivity, and officially consider the measurement of discounting as a quantitative

assessment of the latter [6]. We note that for economics, impulsivity is not directly equated to

elevated discounting. For this field, when discounting is constant (such as in exponential dis-

counting) the discount rate reflects consistent impatient preferences. By contrast, in hyperbolic

discounting the discount parameter may reflect inconsistencies in these preferences (present

bias) and therefore reflect what economists consider impulsivity. In this paper, we attempt to

reconcile these insights from economics and bring them to the attention of fields like psychol-

ogy, neuroscience, and psychiatry.

With hundreds of publications a year focused on delay discounting, these measurements

have now been performed on a wide variety of healthy and clinical populations under many

different conditions. Examples of the prevalence of this measure in the literature include large

studies and meta-analyses in healthy volunteers [7–13], as well as case-control studies in a vari-

ety of patient populations with substance use disorders [14–16], anorexia [17], obesity [18],

personality disorders [19], ADHD [20], and anxiety [21–23]. Adding to this growing literature,

several groups have investigated the neural basis of temporal discounting [24–29] and others

have explored the effect of behavioral or neural manipulations on temporal discounting in

healthy volunteers [30–33].

In parallel to using measures of temporal discounting to assess impulsivity, there has been

growing interest in the quantitative assessment of risk attitudes by measuring formal risk pref-

erences, that is, an individual’s general proneness to or avoidance of risky prospects, in a wide

array of populations [34–37]. In expected utility theory and many other cardinal economic

theories of choice, risk attitude is associated with the curvature of the utility function. This

function can be interpreted as the mapping from the objective amount of a good (or money)

to the subjective value derived from obtaining it. In these theories, this function is related to

choices over probabilistic outcomes [38, 39]. When a subject’s utility function is linear, she

chooses between lotteries as if maximizing expected value (choosing the option for which the

product of the value of the prize and its probability is highest); this is often referred to as risk

neutrality. When the utility function is concave, subjects are risk averse; when it is convex, sub-

jects are risk seeking. Many studies have concluded that there is great diversity in risk prefer-

ence and that risk attitudes are affected by age, context and even physiological states like

menstrual cycle phase [40–45].

More recently, economists have examined how risk attitudes might introduce possible con-

founds to the empirical measurement of discount rates [46–48]. The key ideas in this literature

are: first, that because the future is inherently uncertain, risk attitude must play a role when

evaluating future prospects irrespective of their time preferences [49, 50]; and second, that the

preference for smaller-sooner rewards may be driven by either impatience (what in psychology

is considered the “choice impulsivity” dimension of impulsivity) or by diminishing marginal

utility as captured by nonlinearities in the utility function [51, 52]. Although accounting for

risk preferences when estimating discount rates is of growing importance in the economics

and management fields, with few exceptions [26, 53], it is not a practice that has fully impacted
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studies in the neuroscience and psychology fields, even when both types of preferences are

measured in the same individual. Further, because in economics the focus is rarely on the

employment of these measures for the study of individual differences, the size of the impact of

risk preference on individual discount rate estimates has not been well characterized.

In this study, we investigated how individuals’ risk attitudes bias the estimation of their dis-

count rates. As our goal is to propose this methodology to the fields that do not already employ

it, we used simple standard binary choice tasks widely used in the psychology and neurosci-

ence literature [24, 25, 54, 55] in a real-world non-expert sample. We hypothesized that a pro-

cedure that estimated individual subject temporal discounting rates, but that also incorporated

independently estimated risk attitude parameters, would outperform standard (economic)

tools for estimating temporal discounting rates. We found that in our community sample of

subjects, where there was a wide diversity of individual risk preferences, our approach showed

superior performance in capturing individual intertemporal choice behavior. Unlike previous

studies that employed similar methods but that focused on population-level discount rate esti-

mates, here we focused on individually estimated parameters. We found that the standard

approach introduces a systematic pattern of bias that distorts individual discount rate esti-

mates. We conclude that ignoring individuals’ risk attitudes when measuring temporal dis-

count rates can significantly impact interpretations about their degree of choice impulsivity.

Materials and methods

Subjects

All participants gave written informed consent in accordance with the procedures of the Uni-

versity Committee on Activities Involving Human Subjects of New York University and the

Institutional Review Board of the New York University School of Medicine, which approved

this study. We recruited 56 medically healthy participants (11 women) from the general com-

munity (via flyers, internet advertisement and word-of mouth) without significant history of

substance use or psychiatric illness. Subjects’ demographic information including average edu-

cation level, income level, employment and race and ethnicity breakdown is presented in

Table 1.

Table 1. Sample demographics.

Gender (% males) 73.3%

Age (years) 44.04 (12.4)

Nonverbal I.Q. 91 (2.5)

Education (years) 13.8 (2.0)

Unemployed (%) 14%

Income (monthly $) 1770.49 (263.73)

Race (% C—% AA) 47.6—52.4

Ethnicity (% Hispanic) 14.3

Values are presented as mean (± 1 standard deviation) unless they are percentages. Race is divided into Caucasian

(C) and African American (AA). No other races were present in our sample. Ethnicity is divided into Hispanic and

non-Hispanic. The education and income of our sample match median education level and personal income level

adjusted for educational attainment in the United States.

https://doi.org/10.1371/journal.pone.0191357.t001
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Session description

After collecting pertinent contact and demographic information, subjects completed the inter-

temporal choice task and the risk task. The order of the tasks was randomized across subjects

and sessions. Both tasks were computerized (Psychtoolbox for MatLab and e-prime 2.0) and

were completed in a private testing room. Subjects were given extensive instructions as well as

some practice trials to ensure they understood the tasks fully before beginning. Subjects com-

pleted 2 sessions separated by at least one week.

Risk attitude (RA) task

The task consisted of 64 lottery choices in the gain domain. Each trial involved a choice

between a fixed amount of money ($5 for sure) and a lottery with the probability level associ-

ated with winning a (usually higher) amount changing from trial to trial. Each lottery had two

possible outcomes: $v or $0. The exact amounts of vwere: $5, $6, $7, $8, $9, $10, $12, $14, $16,

$18, $20, $23, $26, $30, $34, $39, $44, $50, $57, and $66. We used three winning probabilities,

p, 25%, 50%, and 75%. In this case, each lottery can be fully described by v and p. Each amount

vwas presented with each probability level once in random order over 4 blocks of 16 trials. In

addition, 4 “catch” trials were included at the start of each block. These trials always presented

a choice between $5 for sure vs. 50% chance of $4 or $0. Thus, these trials in addition to trials

that offered risky lotteries where v was $5 (10 in total), allowed us to assess the frequency of

first order stochastic dominance violations, that is, whether subjects chose the objectively

worse of the two options. We considered two or more of such violations as evidence that we

could not reliably model subjects’ choices with a monotonic utility function. Both the fixed $5

and the lottery were presented side by side on the screen. Subjects were told that each lottery

image represents a physical paper bag that contains 100 poker chips, some red and some blue.

Subjects were told the precise number of red and blue chips in the bag by explicitly showing

the number and by coloring parts of the image according to the proportion of red and blue

chips.

Intertemporal choice (ITC) task

The task was a two alternative forced choice task consisting of 102 trials that presented two

options, one monetary reward to be received on that day and one monetary reward to be

received with variable delay (in days). On each trial, both the fixed immediate and delayed

options were presented side by side on the screen. The range of rewards across both periods

went from $2 to $66. The immediate reward was either $2, $5 or $15, and the delayed reward

was always a larger amount in the following increment levels: for trials with $2 immediate

reward, +$5, +$10, +$20, +$40, +$64; for trials with $5 immediate reward, +$5, +$10, +$20, +

$40, +$60; and for trials with $15 immediate reward, +$5, +$10, +$20, +$40, +$50. The actual

delayed alternative presented was the result of the exact given increment level or plus or minus

$1. Possible delays were 5, 10, 30, 60, 90, 120 and 150 days. The actual delay presented corre-

sponded to the stated delays in days or plus or minus one day. For example, one of the trials

was a choice between $5 today and $66 in 89 days. The selected choice set allowed for a very

distributed investigation of the space to ensure our ability to estimate very high or very low dis-

count rates with equivalent precision.

Incentive compatibility and payment

We compensated subject participation with a $10 fee and a bonus. At the end of the session,

one choice from either the ITC or RA task was randomly selected to determine this bonus.

Risk distorts impulsivity
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This ensures that subjects’ decisions were incentive compatible: they do not know which

choice will count so their best strategy is to treat each one as if it were the one that counts. Pay-

ment for both the participation fee and the bonus was made via money order in the following

way: subjects received a code via a text message to their phone on the day the payment was

due, to prevent against subjects forgetting payments, to claim their bonus at their convenience.

Critically, because all payments were made this way we introduced no differences in the trans-

action costs for different types of payments (participation fee, RA task payment, ITC immedi-

ate payment or ITC delayed payment). For ITC delayed payments, subjects received the code

on the date corresponding to the delay for that chosen option.

RA task analysis

To quantify technical risk attitude for each session, we used a power utility model to fit the

choice data from the RA task as we have described previously [40, 41, 43, 54, 56]. In this

model, the utility (U) of each option (safe or lottery) is given by:

UðoptionÞ ¼ pva ð1Þ

where v is the dollar amount, p is the probability of winning, and α is the curvature of the util-

ity function which serves as a subject-specific measure of technical risk attitude. A subject

whose α = 1 has a linear utility function and is thus risk neutral. A subject whose α> 1 has a

convex utility function and is thus risk-seeking (reflecting a tolerance of risk and uncertainty).

A subject whose α< 1 has a concave utility function and is thus risk-averse (reflecting a dis-

taste for risk and uncertainty). Using maximum likelihood estimation in MATLAB, we fit a

single logistic function to the trial-by-trial choice data of each subject:

PrðlotteryÞ ¼ 1 = ð1þ e� gðUlottery � UsafeÞÞ ð2Þ

where Pr is the probability that the subject chose the lottery option on a given trial, Usafe and

Ulottery are the utilities (subjective values) of the safe and lottery options, respectively, and γ is

the slope of the logistic function, which is a second subject-specific parameter. The parameter

γ captures the stochasticity (as it is related to the randomness of the choice data).

ITC task analysis

We applied four models to quantify subject time preferences. The first model was a non-nor-

mative hyperbolic discounting model [57], which assumes an underlying linear utility. We call

this model Linear utility Hyperbolic discounting (LH) for ease of reference in the text. In this

model, the utility (U) of each option (immediate or delayed) is given by:

UðoptionÞ ¼ v = ð1þ kdÞ ð3Þ

where v is the dollar amount of the option, d is the delay to the delivery of v (which is 0 for the

immediate option), and κ is the discount parameter which serves as a subject-specific measure

of impulsivity. The second model was a non-normative hyperbolic discounting model that

took into account the curvature of the utility function as estimated by Eq (1), captured in the

parameter α. We call this model Nonlinear utility Hyperbolic discounting (NLH) for ease of

reference in the text. In this model, the utility (U) of each option is given by:

UðoptionÞ ¼ va = ð1þ kdÞ ð4Þ

The third model was a normative exponential discounting model which assumes an underly-

ing linear utility. We call this model Linear utility Exponential discounting (LE) for ease of
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reference in the text. In this model, the utility (U) of each option is given by:

UðoptionÞ ¼ ve� kd ð5Þ

The fourth model was a normative exponential discounting model that took into account the

curvature of the utility function again by using α. We call this model Nonlinear utility Expo-

nential discounting (NLE) for ease of reference in the text. In this model, the utility (U) of each

option is given by:

UðoptionÞ ¼ vae� kd ð6Þ

Using maximum likelihood estimation in MATLAB, we fit a single logistic function to the

trial-by-trial choice data of each subject:

PrðdelayedÞ ¼ 1 = ð1þ e� bðUdelayed � UimmediateÞÞ ð7Þ

where Pr is the probability that the subject chose the delayed option on a given trial, Uimmediate

and Udelayed are the utilities (subjective values) of the immediate and delayed options, respec-

tively, and β is the slope of the logistic function, which is another subject-specific parameter.

The parameter β captures the stochasticity (as it is related to the randomness of the choice

data).

Model comparison

The models were evaluated by comparison of their cross-validated log likelihoods: we com-

puted the log likelihood by leave-one-out cross-validation, fitting the model to the data from

all the trials except for one. This process was repeated iteratively for each of the trials and the

likelihoods were added to compute the final log likelihood. We chose this leave-one-out

method to avoid discarding too much data from the estimation process as there were no repli-

cates of the trials and the indifference point location could be hard to resolve for some sessions

(see S1 Fig for a description and rationale of the choice set.)

Results

By design, our subjects exhibited a wide demographic diversity and were representative of the

general urban population (see Table 1). None of our subjects were students or had any

advanced knowledge of finance or previous experience with the type of tasks used in this

study. Subjects performed two decision-making tasks during each session, an intertemporal

choice (ITC) task and a risk attitude (RA) task (see Fig 1A). We recruited 56 subjects to com-

plete 2 identical testing sessions to allow us to assess test-retest reliability. We found that for

our tools and subject sample, reliability was high (intraclass correlation coefficient for risk atti-

tude and discount parameters r> 0.54, p< 0.05). For our analyses, we excluded any sessions

for which the goodness-of-fit (R2) for the risk attitude parameter estimation was lower than

0.4. We also excluded sessions in which subjects always selected one of the options in the ITC

task as this makes it impossible to resolve their indifference point with our choice set. After

these exclusions, we analyzed a total of 78 sessions (2 sessions for each of 39 subjects). In most

of the following analyses, each session is regarded as a separate data point. Since we do not per-

form group comparisons between subjects (all comparisons are of different model fits within

subjects), we note that there are no statistical implications from treating the data in this

manner.
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Diversity in risk preferences

We found that our sample exhibited very diverse risk preferences. We fit the power utility

model shown in Eq (1) to the RA task choice data from each session using the softmax decision

rule in Eq (2). We estimated a subject and session-specific RA parameter (α). This parameter

ranged from 0.1 to 2.173, as shown in Fig 1B (note that values in those distributions are natural

log-transformed). The average RA parameter (α) was 0.7508, and the median was 0.6087. Note

that although on average our sample exhibited risk aversion (α< 1), individual risk prefer-

ences were heterogenous: there was a wide range of α values with many subjects deviating far

from risk neutrality (α = 1, or 0 in the log space shown in Fig 1B).

Diversity in time preferences

To evaluate the diversity of time preferences in our sample, we first ignored risk preferences

and estimated discount parameters using standard methods (effectively assuming risk neutral-

ity in all subjects.) To do so, we fit the “Linear utility Hyperbolic discounting” model (LH)

shown in Eq (3) to each session’s ITC choice data using the softmax decision rule in Eq (7).

Fig 1. RA and ITC task design. A (top): RA task design, the safe and lottery options are simultaneously displayed

during the decision phase. A green dot cues the response time. A yellow square provides feedback on the choice

entered. A variable inter-trial interval (ITI) follows. A (bottom): ITC task design, the immediate and delayed options

simultaneously displayed during the decision phase. The offer disappears and a white dot cues the response time. A

white check mark provides feedback on the choice entered. A variable ITI ensues. For a description of the choice set

(see S1A and S1B Fig). B (left): distribution of natural logarithm of risk attitude parameter (ln(α)) across all subjects

and all sessions. B (right): distribution of natural logarithm of discount parameter (ln(κ)) estimated from the LH

model across all subjects and all sessions.

https://doi.org/10.1371/journal.pone.0191357.g001

Risk distorts impulsivity

PLOS ONE | https://doi.org/10.1371/journal.pone.0191357 January 26, 2018 7 / 18

https://doi.org/10.1371/journal.pone.0191357.g001
https://doi.org/10.1371/journal.pone.0191357


We estimated a subject and session-specific ITC discount parameter (κ). The distribution of

subject discount parameters is shown in Fig 1B (note that values in those distributions are nat-

ural log-transformed). Values ranged from 0.001 (equivalent to the discounting of 2.9% of the

reward’s value after a delay of one month) to 6.4 (equivalent to the discounting of 99.5% of the

reward’s value after one month). The mean κ was 0.3139 and the median was 0.0499 (equiva-

lent to the loss of 60% of the reward’s value after one month).

Taking risk preferences into account improves the fit to ITC choice data

We used maximum-likelihood estimation to fit four different models to each individual ses-

sion ITC choice data: two hyperbolic discounting models and two exponential discounting

models. We focused on these two classes of models because they are the most prevalent in the

literature. Exponential discounting provides a normative account of discounting grounded in

discounted utility theory. Hyperbolic discounting often provides a better fit to behavioral

human and animal data [3, 58]. Of the two hyperbolic models, one did not take risk attitude

into account (assumed a linear utility function, LH) as in Eq (3) and the other (NLH) used the

estimated risk attitude (the utility function curvature parameter α from Eq (1)) as in Eq (4).

Similarly, for the exponential type, one model assumed a linear utility function (LE) as in Eq

(5), and the other (NLE) used the α as shown in Eq (6). To evaluate these four models, we com-

pared their cross-validated log likelihoods (LL). Note that all four models have the same num-

ber of free parameters because the α parameter in the models that incorporated a risk attitude

estimate (NLH and NLE) was fixed, taken from the maximum likelihood estimation procedure

performed on independent data from the RA task (Eq (1)). We employed cross-validation to

avoid over-fitting by iteratively fitting the model on all trials but one and computing the log

likelihood of the model for the left-out trial (see Materials and methods section).

We found that the LL was higher for the model that included an independent estimate of

risk when estimating a hyperbolic discount parameter (NLH) than for the model that did not

(LH), for the majority of the sessions in our data set (Fig 2A). Similarly, we found that the

model that included an independent estimate of risk when estimating an exponential discount

parameter (NLE) had a higher LL than did a model that omitted this term (LE) for the majority

of the sessions in our data set (Fig 2B). Interestingly, the two models that included an estimate

of risk attitude (NLH and NLE) performed similarly well, suggesting that in our data good-

ness-of-fit does not rely on exponential or hyperbolic assumptions (Fig 2C). AIC and BIC

scores were also compared and yielded similar results to our cross-validated LL comparison

(see S2 Fig). We note that for both the hyperbolic and exponential forms, the advantage in

goodness-of-fit of the models that account for risk (NLH relative to LH and NLE relative to

LE) was correlated with the discount parameter. However, this correlation was not only car-

ried by outliers as the rank-ordered Spearman coefficient was significant, rho = 0.5, p< 0.001

for the exponential form and rho = 0.52, p< 0.001 for the hyperbolic form. This means that

the advantage of NLE and NLH was not only true for impatient outliers.

To evaluate the overall performance of the models, we computed the average difference in

LL across all sessions and subjects of the LH, LE, and NLE models relative to the LL of the

NLH and NLE models (Fig 2D and for all possible comparisons between models see S3 Fig).

Across all the data, the risk-incorporating models (NLH and NLE) show overall significantly

superior performance than models that did not include risk (LH and LE). The difference in

goodness-of-fit between NLH and NLE was not significant. However, when we simulated data

generated from each model, NLE proved to be less distinguishable from the other models than

NLH (see S2 Fig); the NLE model fits were equally good for data generated from NLE itself as

for data generated from other models, whereas NLH fits were significantly better for data

Risk distorts impulsivity

PLOS ONE | https://doi.org/10.1371/journal.pone.0191357 January 26, 2018 8 / 18

https://doi.org/10.1371/journal.pone.0191357


generated from NLH itself and not from the other models. We therefore focus on the NLH

model’s superiority for the rest of our analyses.

Failing to measure risk attitude systematically deviates estimates of

discount parameter

Having established that model NLH provides a better account of the data than models that do

not incorporate risk attitude, we next examined the magnitude and direction of the misestima-

tion when risk preference was ignored. We compared the individual discount parameter esti-

mates (κ) obtained from model LH (the most commonly used model in the psychology

literature) and those obtained with model NLH. We found that the two discount parameter

estimates indeed differed for most of our subjects (Fig 3A): for the large majority of subject ses-

sions the discount parameter from model LH was higher than the discount parameter from

model NLH. We next tested whether the difference in estimated discount parameters

depended systematically on risk preference (captured by the α parameter). We simulated 100

data sets using our NLH model with values for the risk parameter samples drawn from a uni-

form distribution within the range of our RA task choice set. This allowed us to cover the

space of α fully, given that in our sample (as in most reported studied subjects in the literature)

Fig 2. Model comparison. A: cross-validated log likelihood (LL) comparison of model LH against model NLH. Each

dot corresponds to data from a single subject’s session. B: LL comparison of model LE against model NLE. Panel C, LL

comparison of model NLE against model NLH. Shaded areas for panels A and B correspond to sessions for which the

nonlinear utility models fit the data better than the linear utility models. C: Shaded area corresponds to sessions for

which the NLH model fit the data better than the NLE model. D: average difference in LL across all sessions between

model NLH and model LH (dark color), between model NLE and model LE (intermediate color) and, between model

NLH and model NLE (light color), black bars indicate S.E.M.

https://doi.org/10.1371/journal.pone.0191357.g002
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most subjects are risk averse (α< 1). We observed that the difference in discount parameter

estimates obtained for these synthetic data sets (κ from LH—κ from NLH) led to a systematic

shift in the estimated discount parameter as a function of the risk preference parameter (α)

(see gray points in Fig 3B).

We also computed the difference in discount parameter estimates from both models for

our subject data and saw the same trend we observed for simulated data (see dark points in

Fig 3B): When the α parameter is less than 1 (risk aversion) the κ parameter estimated by LH

is higher than that of NLH. Thus, the standard method employed by most studies leads errone-
ously to the conclusion that risk-averse individuals are more impulsive than they really are. Con-

versely, when the α parameter is higher than 1 (risk tolerant) the κ parameter estimated by LH

is lower than that of NLH: risk-seeking individuals appear to be less impulsive than they really
are. Logically, when α = 1 NLH and LH converge to the same functional form and the discount

parameter estimates are identical. Further, the larger the deviation from risk neutrality, the

more model NLH outperforms LH, suggesting that any individuals with non-neutral risk pref-

erences are much better captured by our model NLH (Fig 3C).

Fig 3. A systematic bias in discount parameters. A: comparison of estimated discount parameters from model LH

against model NLH for each subject’s sessions presented as natural logarithm of discount parameter (ln(κ)). B:

discount parameter bias computed as difference between the natural log of estimated parameters from model LH

against model NLH (ln(κ)LH − ln(κ)NLH), plotted as a function of the corresponding risk attitude parameter (α), dark

dots represent data from each of our subjects’ sessions, gray dots represent simulated data. C: difference of goodness of

fit (LL from NLH—LL from LH) between NLH and LH model as a function of the absolute value of the natural

logarithm of α (|ln(α)|), risk neutrality here is 0 and any value above 0 is either risk averse or risk seeking. Spearman

correlation: rho = 0.297, p< 0.01. Shaded area corresponds to the sessions for which model NLH fit the data better

than model LH. D: correlation between the natural logarithm of the risk attitude parameter (ln(α)) and the natural

logarithm of the discount parameter and model NLH (dark color).

https://doi.org/10.1371/journal.pone.0191357.g003
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Importantly, the NLHmodel also resulted in the orthogonalization of the risk attitude parame-
ter α and the discount parameter κ, while α and κ derived from model LH were significantly neg-
atively correlated (Fig 3D). For model LH, the Pearson correlation coefficient was r = -0.451,

p = 0.0001. Conversely, the correlation between α and the κ derived from model NLH was not

significant (Pearson’s r = -0.02, p = 0.861). Taken together, these results show that the NLH

model yields a discount parameter that is not only more precise but also allows for κ and α to

reflect distinct aspects of decision-making rather than being conflated as is the case with esti-

mates derived from the traditional model LH.

Discussion

We show here that 1) a temporal discounting model that incorporates an individual out-of-

sample estimate for risk attitude outperforms models that assume risk neutrality (Fig 2), and

2) that failing to incorporate this risk attitude estimate leads to systematically biased discount

parameters that entangle risk attitude and choice impulsivity (as in Fig 3); risk-averse subjects

appear more impulsive than they are.

The finding that risk attitude interacts with intertemporal preference is not unexpected.

Recent advances in economic research focusing on time preferences have been prompted by

the potential confounding influence of non-linear utility upon estimates of discount parameter

[59]. Studies devoted to this issue have applied either joint elicitation techniques of the kind

used in our study (where risk preferences and time preferences are estimated from separate

choice tasks) or methods where both utility and discounting are elicited from intertemporal

choices [60, 61]. There is still no theoretical consensus among economists on the correct inter-

pretation of the relationship between utility for risk and instantaneous utility for time [62]

and, for some, subjective valuation of temporal payoffs may differ from that of risky ones [60,

63–65], but see [66]. However, from an empirical point of view, our study contributes to the

growing number of reports that indicate there is a systematic bias in the discount parameter

estimates when risk attitude is ignored. This dependence can be observed even in simple and

widely employed binary choice tasks and at the individual subject level.

While we recapitulate the results reported by previous studies coming from economics and

finance, the novel contribution of our work lies in two keys aspects: First, unlike previous stud-

ies we do not aggregate the subject data and estimate a single group parameter for the entire

sample. Instead, we capitalize on the diversity of individual preferences by independently esti-

mating a risk aversion parameter and a discount parameter for each subject’s session. This

diversity is the result of our rich community sample which is representative of the average

urban dweller. With some notable exceptions [51], the majority of previous studies on this

topic have been performed with expert samples such as economics or finance students, which

may lack the diversity in demographics that would allow for inferences about how these deci-

sions are made by typical people. If not enough variance in risk preferences is achieved in the

studied sample, it is possible the effect of risk may not be fully observable. We found wide vari-

ability in parametric risk attitudes in our sample, despite the mean not being much different

from what has been previously reported in the literature. Furthermore, we simulated data with

higher risk-seeking preferences to explore what the bias in the discount parameter would be in

that direction. Although not often seen in healthy volunteers, risk-seeking behavior is more

prevalent in psychiatric conditions [67–72], making this bias relevant for these types of studies.

Second, we employed widely used binary choice tasks that can easily be completed by any sub-

ject and do not require any explicit knowledge of finance. We believe this is important if these

assessments are to be deployed across different types of populations, including those without
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any higher education (in our sample the average education level is 13.8 years, see Table 1) and

without any sophisticated understanding of interest rates and finance in general.

To establish whether the diversity in risk preferences has implications for how well models

of temporal discounting fit individual subject choice data, we compared four models that are

used in this growing literature. Two of these models assume that subjects are risk neutral: the

linear hyperbolic (LH) and exponential (LE) models. The two other models incorporate sub-

ject-specific risk attitudes, that is, the curvature of the individual’s utility function. The LH

model is the most widely used in the psychology and neuroscience literature to parametrically

investigate discounting as a measure of impulsivity. It has been shown to fit behavioral data

better than the normative exponential (LE) alternative, which often fails to fit especially highly

impulsive subjects’ data. The superiority of LH over LE has usually been linked to the fact that

subjects exhibit a “present bias”, that is, the tendency to give stronger weight to payoffs that are

closer to the present time when considering trade-offs between two future moments. As such,

subjects’ preferences have been reported to be better modeled by a hyperbolic rather than an

exponential decay function. We recapitulated that result in our sample but found that our

NLH model fit the intertemporal data better than both LH and LE across most of our subjects

and sessions, suggesting taking risk into account is important regardless of where one sits in

the exponential versus hyperbolic debate. Interestingly, NLH and NLE had similar perfor-

mance. Consistent with previous studies [51], accounting for risk in the exponential form

(NLE) resulted in a significantly better fit than the hyperbolic form that did not (LH) (see

S3 Fig), which suggests that discounting becomes more constant when risk is considered.

However, NLE seems to be a less precise model at distinguishing between LE and NLE gener-

ated data, while our model NLH was more specific (Fig 2 and S2 Fig). This means that NLE is

too flexible, fitting data equally well even when it comes from different generative models. By

contrast, NLH was a more selective model, a feature that may be more desirable for fields such

as neuroscience that seek the true (neural) generative mechanism behind the behavior exhib-

ited by the decision maker.

We have shown that ignoring risk attitude results in a systematic bias in the discount

parameter estimates (Fig 3). For a large range of α values close to 1, LH and NLH do not per-

form differently, but the more risk averse or the more risk-seeking an individual, the more our

approach outperforms the traditional approach. One clear implication of using the LH model

in subjects that exhibit widely varying risk attitudes is that discount parameter estimates may

be biased. We showed that when subjects are risk averse, the LH model returns a higher κ esti-

mate value than NLH and conversely, when subjects are risk-seeking, LH underestimates the

discount parameter. If one were comparing risk-averse individuals (e.g., the average healthy

person) to less risk averse individuals (e.g., problem gamblers) the standard approach might

lead to conclusions about differences in choice impulsivity between these groups that might be

(perhaps better) explained by differences in risk attitude. Some studies have already begun to

suggest that reported differences in discount rates between substance users and controls may

be inflated by the use of the LH model [73]. This could also prove relevant for the comparison

between patients with anxiety disorders (who have been reported to be highly risk-averse [74])

and healthy controls.

Of particular interest to us is the fact that investigations into the neural correlates of utility

(or subjective value) and of intertemporal choice have also shown that the shape of this func-

tion is important when computing discounted subjective value [26]. We found that the NLH

model not only fits behavioral data better but also is the most specific model (see S2 Fig), sug-

gesting that the NLH model could be the best approximation to the brain’s generating model,

a question that remains to be tested in future studies. This is relevant for any study that

attempts to tie time preference behavior to neural activity. For instance, it has been suggested
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that temporal discounting could provide a behavioral marker for psychiatric diagnosis and

prognosis [75, 76]. Transforming neural measurements of temporal discounting into a valid

biomarker of clinical utility for psychiatry supposes that it accurately measures the intended

biological and behavioral process [77, 78]. Our study shows that incorporating risk attitude is

critical to delineating this process with precision.

As shown in Fig 2 (and S3 Fig) we found a clear benefit of taking risk preferences into

account. While several psychiatric disorders are characterized by exhibiting extreme attitudes

toward taking risks, most clinical studies that have examined impulsivity in these populations

have not simultaneously assessed risk preference and have not done so in an incentive-com-

patible manner. For example, an implication of doing so could be that differences in discount-

ing could be underestimated if in fact there are larger differences in risk preferences, e.g. if the

control sample is significantly more risk averse than the clinical sample. Similarly, differences

in risk preferences could be interpreted as differences in discounting. A few psychological

studies in problem gamblers and alcoholics have performed both measures of temporal and

probability discounting [79, 80]. Although these studies employ tasks very similar to our RA

task for the estimation of probability discounting rates, they have not explicitly resolved the

curvature of the utility function and therefore have not corrected for it in their estimation of

discount rates. This would prove fairly easy to do using the methodology we propose here. The

impact of ignoring risk preferences may reach beyond studies of clinical populations. In the

social decision-making field for example, studies have suggested that discounting may be

related to lack of cooperation [81] and to the willingness to punish other free-riders and non-

cooperators [82, 83]. However, few of these studies have controlled for risk preferences, which

may be important given that these seem to also correlate with individuals’ willingness to coop-

erate [84].

Temporal discounting is considered to be one of the many dimensions of the impulsivity

personality construct. In the psychology literature, risk-seeking aspects of personality are often

included in descriptions of impulsivity but there have been many attempts to separate these

dimensions. Our approach results in the decorrelation of risk preference and time preference

parameters (Fig 3) and allows for these parameters to reflect different aspects of decision-mak-

ing and personality. We believe this separation could result in discount parameter estimates

that may be more meaningful than those obtained using traditional methods. We propose a

methodology that better resolves individual estimates of impulsivity and that could be easily

incorporated in the growing literature on impulsivity by researchers interested in individual

differences and behavioral phenotyping in clinical samples.

Supporting information

S1 Fig. Choice set space and example subject’s choices. A) Visualization of the ITC task trial

space. Each dot is a trial composed of an offered immediate (no delay) monetary amount, a

larger monetary amount to be delivered with a delay, and the delay to its delivery (in days).

Shaded plains correspond to trials where the immediate monetary amount is the same, B) The

same trial space displaying the choices made by an example subject. Blue dots correspond to

the trials where the subject chose the immediate payment option and pink dots correspond to

the trials where the subject chose the delayed payment. The boundary between pink and blue

dots reflects the location of the indifference points in the space. Shaded plains correspond to

trials where the immediate monetary amount is the same.

(TIF)

S2 Fig. Model recovery analysis. Synthetic datasets were generated from each of the four

models, LH, NLH, LE and NLE and then fitted with each model. Each cell in this matrix
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represents: AIC Fitted model—AIC True model. This difference equals 0 when the data gener-

ated from a model is fit with the same generative model. The larger the difference the worse

the fitted model’s performance with respect to the generative model. Model LH is not a very

discriminative model, models LE and NLE are especially bad a discriminating between each

other. Out of the four models, model NLH is the most discriminative and the only that is sig-

nificantly superior in goodness-of-fit to all other ones.

(TIF)

S3 Fig. Cross comparison of all models. Cells indicate medians and 95% CI of bootstrapped

log likelihood (LL) score differences. A positive median (in red) indicates that the model in the

corresponding row had a higher score (better fit) than the model in the corresponding col-

umn.

(TIF)
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