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Choice impulsivity is an important subcomponent of the broader construct of

impulsivity and is a key feature of many psychiatric disorders. Choice impul-

sivity is typically quantified as temporal discounting, a well-documented

phenomenon in which a reward’s subjective value diminishes as the delay

to its delivery is increased. However, an individual’s proclivity to—or more

commonly aversion to—risk can influence nearly all of the standard exper-

imental tools available for measuring temporal discounting. Despite this

interaction, risk preference is a behaviourally and neurobiologically distinct con-

struct that relates to the economic notion of utility or subjective value. In this

opinion piece, we discuss the mathematical relationship between risk

preferences and time preferences, their neural implementation, and propose

ways that research in psychiatry could, and perhaps should, aim to account

for this relationship experimentally to better understand choice impulsivity

and its clinical implications.

This article is part of the theme issue ‘Risk taking and impulsive behaviour:

fundamental discoveries, theoretical perspectives and clinical implications’.
1. Introduction
Impulsive behaviour is a core feature of many psychiatric conditions: from the

pathognomonic tendency to act without foresight seen in addictive disorders, to

the difficulty in suppressing movement once initiated that is characteristic of atten-

tion deficit hyperactivity disorder (ADHD), to the thrill-seeking behaviour typical

of gambling disorder. While impulsivity is a dimensional symptom that cuts across

diagnostic boundaries, it is itself multifaceted. Recently, a panel of experts on

impulsivity proposed a taxonomy that broadly divides impulsivity into rapid-
response impulsivity, a motoric process characterized by poor inhibitory control,

and choice impulsivity, a decision-making process primarily characterized by an

inability to delay gratification [1,2]. It is important to note however that, in addition

to the delay of gratification, choice impulsivity can also be related to the tendency to

make a premature decision without sufficiently evaluating information or consid-

ering its accuracy—a process referred to as reflection impulsivity [3]. Consistent

with the U.S. National Institute of Mental Health’s RDoC initiative [4], this sub-

classification of impulsivity has been argued to more closely align with the

different neurobiological circuitry that supports each subcomponent process.

Choice impulsivity, in particular, has broad clinical importance. Individuals

diagnosed with schizophrenia [5], bipolar disorder [6], impulse control disorders

[7], bulimia nervosa [8,9], ADHD [10] and substance use and addictive dis-

orders [11] have all been found to have increased choice impulsivity, while

those diagnosed with obsessive compulsive disorder (OCD) and anorexia nervosa

may show the converse pattern [12]. The relationship between choice impulsivity

and at least a few of these disorders seems to be prospective [13,14], suggesting this
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subcomponent of impulsivity could have clinical utility as a

measurable vulnerability factor for primary prevention.

Choice impulsivity may be assessed with different tools.

Certain tasks, such as the information sampling task [15–17]

or the information-gathering task [18], report on the inability

to fully deliberate and consider solutions to problems (reflection

impulsivity) because they index an individual’s evaluation of

the sufficiency of the information received before making a

choice. For the purpose of this opinion piece, we focus on

another widely used measure of impatience, which lies at the

core of choice theory in economics: delay discounting, which is

also referred to as temporal discounting. Temporal discounting

is the observation that a reward delivered after a delay is subjec-

tively worth less than the same reward delivered immediately.

Temporal discounting can be modelled mathematically in

different ways, but all the algorithms capture some form of a

discount rate (a notion taken from economics), a constant that

captures the idiosyncratic rate of reward devaluation as a func-

tion of the delay to reward receipt. The higher this discount rate,

the more a delayed reward will be modelled as devalued by

waiting; and hence the more likely an individual will be

described as foregoing a valuable later outcome in favour of

impatiently selecting a smaller but more immediate alterna-

tive—the very signature of choice impulsivity. Temporal

discounting is usually measured by intertemporal choice

tasks in which individuals are specifically asked to decide

between smaller–sooner rewards and larger–later rewards.

This relatively simple methodology enables rapid and easy

measurement of the discount rate in the laboratory, the field

and the clinic, with its first applications to psychiatry, and sub-

stance addiction in particular, dating back to the late 1990s

[19,20]. Its applicability is further supported by its reliability

and reproducibility, as several standard tasks have now been

shown to yield consistent results in clinical populations [21], a

necessary characteristic of a clinical marker.

While separating choice impulsivity from rapid-response

impulsivity has received broad translational support, the cur-

rent disaggregation may still be imperfect [22]. For example,

the preference for smaller immediate rewards can, for fairly

subtle reasons, also reflect changes in risk-taking or risky

behaviour in general, an independent decision construct

[23–25]. While individuals colloquially labelled as ‘impulsive’

are more likely to seek and engage in risky situations, it is not

clear whether they do so owing to impulsivity or because they

exhibit a logically separate and idiosyncratic proclivity to

assume risks. Because choices between rewards of different

magnitudes are influenced by one’s risk attitude, many of the

tasks used to measure temporal discount rates necessarily

entangle risk attitude and choice impulsivity. Commensurate

with this largely theoretical entanglement, a growing number

of studies have begun to relate choice impulsivity to pathologi-

cally ‘risky’ behaviours, from gambling [26] to suicide [27] and

quite prominently to substance use disorders [11], but do not

always explore how idiosyncratic risk attitudes and impulsiv-

ity, which are both logically and neurobiologically separable,

may separately explain the behaviour or pathology of interest.

As with temporal discounting, an individual’s general

proneness to or avoidance of risky prospects—their risk prefer-

ence—can also be quantified using simple choice paradigms

that are reliable, largely repeatable and well suited to the

clinic [28]. Like discount rates, these measures seem to be clini-

cally relevant for many of the same psychopathologies [29–31].

From a theoretical perspective, the economics and finance fields
have long acknowledged the possible confounds that risk pre-

ferences introduce into the measurement of time preferences

and temporal discounting [32–34]. Many studies have explored

how individuals’ behaviour toward uncertainty technically

biases most tools for the measurement of delay discounting

[35,36]. This is troubling because, while from an empirical

point of view, hundreds of publications employ time preference

measures of choice impulsivity, few additionally focus on risk

preferences with the goal of disambiguating their contribution

to temporal discounting and impulsivity. Even fewer have

done so with a focus on individual differences. The result

may be a systematic (and unnecessary) confounding of risk

attitudes and choice impulsivity in some of the literature.

Here, we review these latter studies and examine how they

could, and perhaps should, methodologically impact future

studies focused on individual differences in impulsive choice

in health and disease. Adding precision to our measures of

human (and animal) impulsive choice behaviour, we argue,

could help facilitate a more accurate dissection of the neural cir-

cuitry that supports this behaviour and its disruption in

pathological conditions. Better precision could also translate to

better concordance between animal and human measures of

the same constructs, aiding the development of more targeted

behavioural, pharmacological and other therapeutic interven-

tions. Finally, clinically, a more precise taxonomy of what

constitutes ‘impulsive’ and ‘risky’ behaviour may be beneficial

for multiple reasons. First, it may contribute to improved

diagnosis by facilitating the segregation of disorders with an

impulsive decision-making aetiology from those with a risky

decision-making aetiology, a clustering that would be obscured

by interactions between these two dimensions. This quantitative

dimensional approach to psychiatric diagnosis research is being

actively explored, with some initiatives coming from the U.S.

National Institute of Mental Health [37–39] with the goal of

better categorizing healthy and pathological human behaviour.

Second, it may help better connect clinical phenomenology to

neurobiology, pointing to more specific targets for therapeu-

tic intervention. And finally, it could lay the foundation for

personalized medicine in psychiatry, by adding precision to

individualized measures of maladaptive behaviour.
2. Temporal discounting formalizations for
modelling impulsive choice

The preference for smaller–sooner over larger–later rewards

has been an intense topic of research by economists, etholo-

gists, psychologists and neuroscientists for over four decades

[34,40–46], but the first formal mention of intertemporal

choice dates much further back to at least 1937 [47]. Through-

out this rich history, intertemporal choices have been assayed

using many different methods and modelled in diverse

ways, but almost always by pitting two choice attributes

against each other: reward and time. Across the many available

measures, preferred choices are always found to be positively

correlated with reward amount (I want more) and negatively

correlated with delay to reward delivery (I want it sooner).

The trade-off between these two attributes is algorithmically

formalized by the devaluation or ‘discounting’ of value as a

function of delay, hence it is referred to as delay discounting

or temporal discounting. Many different formulations of tem-

poral discounting exist in the literature, but the two that have

been most widely adopted are exponential discounting and
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hyperbolic discounting. In the first formulation, it is assumed

that delaying or accelerating two dated outcomes by a

common amount should not change preferences between the

two possible outcomes, and as such a subject’s intertempo-

ral preferences are referred to as ‘time-consistent’. When

discounting is constant in this way (the subjective value of a

reward drops by a constant percentage with each additional

unit of time) it can be captured by an exponential decay func-

tion where the time constant of the decay is the so-called

discount rate:

Ut(ct) ¼ v � e�k�t:

This is the most common form of discounting in the economics lit-

erature (in which consistency is a desiderata), where Ut(ct) is the

utility U of consumption c at time t and k is the [constant] discount

rate by which the value of an outcome v is reduced at time t. In this

framework, steep discounting might be said by an economist not

to be impulsivity per se, but rather a kind of impatience—a rational,

constant degree of preference for immediate outcomes that we

perceive in patients to be impulsive in the colloquial sense.

However, a significant body of empirical work has shown that

this model does not always capture real behavioural data well

[32,46,48–52]. Instead, mathematically hyperbolic forms of

discounting perform better under many, if not most, real-world

conditions [53–56] because humans and other animals are

steeper discounters for short delays than for long delays. Some

authors have referred to this inconsistency as ‘present bias’

[33,34,46] but this phenomenon is observed irrespective of

whether the sooner alternative is in the present or not [57].

Many functional forms for this process that result in a

hyperboloid discounting function have been proposed in

the literature. The most commonly used in psychology

(although alternative forms are used by economists [44,58])

is the one proposed by Mazur (1987) [59]:

Ut(ct) ¼
v

1þ k � t :
3. Economic theory formalizations of risky choice
All humans and animals also show an idiosyncratic unwill-

ingness to tolerate risk to some degree. If asked to choose

between a certain gain and a risky 50% chance of earning

more, there is some amount ‘more’ at which any given subject

will accept the risk of loss to earn a chance at the larger gain.

Just how much more reward one requires to accept a given

level of risk varies from subject-to-subject, to some degree

between gains and losses ([60], but also see [61]), and also

seems to change across the lifespan [62,63].

Most individuals can be described as strongly preferring

to avoid risks and these individuals require large gains to

entice them to accept offers with more uncertain rewards, a

pattern called risk aversion. A smaller group of individuals

prefer to engage in risk and accept risky offers even when a

certain alternative is of nearly equivalent value. People who

behave in this way are referred to as risk seeking. Other indi-

viduals are indifferent toward risk—making their decisions

based only on the actuarial long-term expected value of the

options before them—and are hence called risk-neutral.

This relationship between risk (probability) and reward mag-

nitude lies at the heart of essentially all economic theories of

choice such as expected utility theory [64,65], rank-dependent
utility or prospect theory [66]. As for a sizable range of poss-

ible choice options these models are all roughly equivalent,

for the purposes of this paper we turn next to expected utility

theory explanations of risk preference.

The concept of economic utility, which we will refer to

(using the neurobiological convention) as subjective value,

was first introduced by Daniel Bernoulli (1738) and hinges

on the idea that the subjective well-being (or suffering)

derived from a payoff is not precisely equal to the objective

size of the gain or loss [67]. Instead, the objective outcome

is presumed to be internally and individually processed to

yield a subjective experience, in much the way that classical

psychophysics relates luminance in the outside world to the

percept of brightness. This internal representation of subjec-

tive value is assumed to vary from individual to individual

(and possibly from context to context).

Economists refer to the mathematical function that, like the

Weber Law, maps the objective amount of any reward or pun-

ishment (e.g. money) to the subjective well-being derived from

obtaining it as the Utility Function. For clarity, we concentrate

here on the domain of rewards, or in the language of econ-

omics: gains. Consider an individual whose utility function is

(like a Weber curve) concave, that is, initial increments in the

objective amount of a monetary reward lead to large incre-

ments in utility, but subsequent identical increments

in reward lead to smaller and smaller increases in utility. Her

marginal utility is said to be diminishing as she obtains more

money. Now consider what happens when this individual is

evaluating two possible options: a certain gain of $100 and a

lottery with 50% chance of $200 and 50% chance of $0. Because

her marginal utility is decreasing, while the objective expected

value of both outcomes is the same (0.5 � 200¼ 100), the

expected utility of the gamble may be smaller for her than

that of the certain payoff because in a subjective sense 200 is less
than twice 100. This explains why she might choose to avoid

the risky option and chose the safe outcome instead of the

lottery despite the fact that to an actuary they are equivalent.

Conversely, a risk seeking individual will have a convex utility

function, with increasing marginal utility, and therefore will

accept many gambles instead of the certain outcome. A risk-

neutral individual, who is indifferent to risk, will simply

choose the outcome with the largest objective expected value

as her mapping between value and utility will be linear. This

brief explanation captures how risk preference relates to the

shape of the utility function.

Formally, the expected utility can be expressed by

EU( p1,...,pn) ¼
Xn

i¼1

piUi,

where a risky prospect is evaluated as the product of the prob-

ability of winning p and Ui (the subjective utility of the payoff

xi), rather than the purely objective product of pi and xi. As with

discounting, the utility function Ui can take many functional

forms. One of the most common forms in the literature is the

constant relative risk aversion (CRRA), otherwise known as

the power utility family of functions [68], of the form:

U(x) ¼ xr,

where r captures the curvature of the utility function, and by

extension, is a measure of an individual’s risk attitude.

A ‘risk-neutral’ individual has an r ¼ 1 such that the mapping

between value and utility is linear. A ‘risk averse’ individual
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will have a concave utility function, with diminishing marginal

utility, where r , 1. Conversely, a ‘risk seeking’ individual will

have a convex utility function, with increasing marginal utility,

where r . 1 [69].

The shape of the utility function is of interest to psychiatry

because it provides a computational method for quantifying

the way in which individuals subjectively value positive or

negative outcomes and how this dictates their engagement

with, or avoidance of, uncertainty. For instance, while most

people are somewhat risk averse, a patient with a phobia

may be extremely (pathologically) risk averse [70] and conver-

sely, an individual with a gambling disorder might exhibit

risk-loving behaviour [71]. The fact that we can measure the

curvature of the utility function using simple choice tasks

and that this measure seems to translate to behaviour in

realms other than preferences over gambles suggests that this

can serve as a potentially powerful clinical tool.
.Soc.B
374:20180135
4. Theoretical and empirical separation of risk
and time preferences

As alluded to above, traditional approaches to modelling tem-

poral discounting ignore potential nonlinearities in the utility

function, and hence individual differences in risk attitude,

by computing the discount rate while specifically assuming
that subjects are risk neutral. This is particularly problematic as

a significant body of work has shown there is wide

heterogeneity in the shape of individual utility functions (a

diversity in risk preferences) and that, by and large, most indi-

viduals exhibit some degree of risk aversion—i.e. concavity in

their utility function for most reward types [72].

The theoretical challenge presented by the potentially con-

founding influence of nonlinear utility upon estimates of the

discount rate was originally brought to the general attention

of economics and psychology by Frederick et al. in 2002 [33].

Since then, numerous attempts have been made to elicit separ-

able risk and time preferences. In a series of seminal papers

[73,74], Andersen and colleagues proposed a measure of the

discount function conditional upon utility, first by estimating

the r curvature parameter using an independent risk task.

Using this methodology, the authors ‘corrected’ their collective

estimate of the discount rate of a sample of 253 adult Danes

from an annual discount rate of 25.2% to 10.1%, concluding

that by ignoring the risk averse preferences of this population,

they had overestimated the discount rate (and hence people’s

choice impulsivity) by a large margin. Similarly, Laury et al.
[75] reported a reduction from an annual discount rate of

55.5% to 14.1% after correcting for risk with a different task

[75], and Takeuchi [76] showed that imposing linear utility

increased the discount rate estimates and resulted in poorer

model fits to behavioural data [76].

We note that there have been important contributions on

this issue of the separability of time and risk preferences that

have proposed solutions outside of the standard expected uti-

lity-based approach that we describe here [77]. Primarily, the

ordinal certainty equivalent hypothesis [78] and the use of

non-expected utility functions [36,79,80] have provided

alternative solutions to make risk and time preference par-

ameters identifiable. Andreoni & Sprenger [81], however,

approached the separability of risk and time preferences

quite traditionally by systematically manipulating risk in an

intertemporal choice task [81] and found that preferences
differed when both the immediate and delayed rewards

were probabilistic relative to when these rewards were certain

[82]. They concluded that (1) time preferences are distinct

from risk preferences because they change when risk is expli-

citly present and (2) that utility under risk may be more

concave than utility under certainty. This second point is

shared by other authors [83–86]. For instance, Abdellaoui

and colleagues [87] find differences in the curvature of the

utility function for risk and for time preferences measured

separately [87]. Other authors suggest that risk must play a

role in the evaluation of future choices regardless of time pre-

ferences and that this may be accounted for by prospect

theory [36,88]. This implies that utility under risk cannot be

equated to utility at each time step—instantaneous utility—

of a discounting function. This is interesting in light of

brain imaging data that we discuss further below showing

instead extensive neural overlap in the representation of sub-

jective value for risk and the discounted subjective value,

which potentially argues against this perspective. In any

case, while these very detailed and advanced debates in the

literature are of deep interest, all of these authors focus on

the notion that instruments commonly aimed at measuring

impulsivity can be entangled with risk-attitude. For this

reason, we focus next on a study of how risk preferences

can bias estimations of discount rates as they are traditionally

explored (using simple binary choice tasks) in many psychol-

ogy and psychiatry studies, which assumes an equivalence of

utility across risk and time as in Andersen et al. [73].

We recently demonstrated that ignoring risk attitudes

when estimating individual discount rates not only overesti-

mates these rates, but also introduces a systematic bias,

whereby risk averse individuals appear more impulsive

while risk tolerant individuals appear less impulsive than

they really are [89]. We simulated discounting behaviour

using a wide distribution of r curvature values for the utility

function and showed that our predicted pattern of bias was

matched by the behaviour of a community sample of individ-

uals with diverse risk preferences (figure 1a). Our simple

binary choice tasks (designed to separately capture risk and

time preferences as in Andersen et al. [73]) have high transla-

tional value because they are of the kind that have been

employed in studies with other animal species like rodents

or non-human primates, unlike the choice lists or convex

budget time sets described in the economics literature [90].

Furthermore, they do not require any sophistication or

knowledge of finance to complete. Here, we used an indepen-

dent risk task to estimate the curvature of each subject’s

utility function. This parameter, which corresponded to the

individual’s risk attitude, was then imputed into the discount

function (exponential or hyperbolic) such that discounting is

computed on utility vr rather than on value v, as in the

following equation:

Ut(ct) ¼
vr

1þ k � t :

By employing this methodology, we showed that our dis-

counted model accounted better for the behaviour of our

real-world sample, and more importantly, we were able to

fully decorrelate the estimated discount rate from the estimated

risk preference parameter, thus giving us confidence that we

can measure dissociable aspects of subjects’ decision-making

behaviour (figure 1b).
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5. The neural implementation of temporal
discounting and risk preference

Numerous studies using functional magnetic resonance ima-

ging (fMRI) in human subjects have examined the neural

correlates of intertemporal choice and discounted subjective

value [43,91–94], and separately, of risky choice and subjec-

tive value modulated by uncertainty [95–99]. A handful

have additionally begun to examine how risk preferences

and the discount rate might interact at a neural level to

drive impulsive choice [100–102].

Early work by McClure and colleagues [86] on the neural

basis of intertemporal choice seemed to suggest the engage-

ment of two neural systems in the decision to select a larger

later reward, an account some have suggested has to do with

the competition between two ‘selves’, one that pushes behav-

iour towards less patience (i.e. towards the immediate

reward) and the other that pushes behaviour towards more

patience. This initial conclusion was based on a fairly complex

multi-step inference suggesting that one set of brain regions, the

ventromedial prefrontal cortex (VMPFC), ventral striatum, and

posterior cingulate cortex (PCC), was more active when sub-

jects chose the immediate relative to the delayed options in an

intertemporal choice experiment [71,86]. And that yet another

set of regions, the dorsolateral prefrontal cortex (DLPFC) and

posterior parietal cortex, were active when the subject made a

more difficult choice compared to an easier choice.

More recent studies agree that a single neural system is

used to evaluate both immediate and delayed rewards,
with each reward’s value determined by how far away in

time it is to be received. Kable & Glimcher [43] first tested

this idea by estimating individual subjects’ discount rates

based on the choices they made in an intertemporal choice

experiment that included critical elements of the approach

used by McClure and colleagues in a nested fashion. The

authors then used this estimate to construct what the dis-

counted subjective value of each option on a given trial of

the experiment would be for a given subject based on that

subject’s own discount rate. Using model-based fMRI, this

study revealed that activity in a small set of brain regions

all previously observed in McClure et al. [86] while subjects

chose the immediate rewards, the VMPFC, ventral striatum

and PCC, increased (in this case, hyperbolically) exactly as

the value of the offer increased—a finding now widely seen

as evidence that a single system represents discounted subjec-

tive value. In a follow-up study, Kable & Glimcher [57]

showed that this was also true in the context of deciding

about two delayed rewards (where there could be no ‘present

bias’) rather than about a delayed and an immediate reward

[57]. In this study, subjects anchored their discounting behav-

iour to the soonest-possible reward, not simply to the present,

and the magnitude of activation in the VMPFC, striatum and

PCC was not higher when an immediate reward could

be chosen relative to when only a delayed reward could be

chosen. Instead, activity in these regions encoded the subjective

value of immediate and delayed rewards. Together, these two

studies, along with a slew of subsequent work, provide what is

now typically seen as unequivocal evidence that the VMPFC,



Pine et al. [96]

discounted utility

discounted subjective value

Kable & Glimcher [43]

subjective value under risk (utility)

Levy et al. [92]

unified subjective value system

Bartra et al. [98]

Figure 2. Neural correlates of discounted subjective value, subjective value under risk (or undiscounted ‘utility’) and discounted utility. The three types of value
signals are found in the ventromedial prefrontal cortex (VMPFC) and striatum, among other regions. These two regions form the core of the brain’s unified subjective
valuation system as identified in meta-analytic data. Adapted and reprinted with permission from Kable & Glimcher [43], Levy et al. [92], Bartra et al. [98] and Pine
et al. [96]. (Online version in colour.)
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striatum and PCC track discounted subjective value and not

simply immediacy, impulsivity or a ‘hot’ response to a

reward. While both perspectives—dual-system versus unified

system—have found behavioural support, the latter view

provides a more parsimonious account (from a neurobiological

perspective) of how we might decide about the future. Indeed,

further work continues to show that the VMPFC, striatum and

PCC are not exclusively or disproportionately more active for

immediate rewards. Instead, these regions are thought to

form the core of the brain’s valuation system, a set of brain

regions that track the value of choice options across a variety

of decision contexts and reward types—including delayed

and risky rewards [98] (figure 2).

A corollary to the unified system view as it pertains to our

understanding of the neurobiology of intertemporal choice and

the discount rate is that if the same brain system represents

individual risk preferences (and hence, the curvature of the

utility function) then this prior evidence for discounted subjec-

tive value representation might in fact be accounted for by the

so-called probability discounting, the notion that all preference

for immediate rewards stems from fear that any delay is itself

intrinsically risky. As the decision-maker might believe that

the probability of acquiring a given reward decreases as

delay to its receipt increases, fMRI correlates of discounted sub-

jective value might reflect the influence of probability and

subjects’ risk preferences rather than delay per se. To address

this possibility, a handful of fMRI studies have simultaneously

examined subjects’ preferences for risk and delay [99,100], the

unique contribution of delay to intertemporal choice holding

risk constant [97] and the neural correlates of discounted sub-

jective value adjusted for the curvature of subjects’ utility

functions [96]. First, what these studies show is that the prefer-

ence for immediate rewards cannot be fully accounted for by

fear of risk, suggesting that it may be possible to isolate the

unique contribution of delay on choice at a neural level.

Second, while these studies do show overlap in the neural

basis of decision-making about delayed and risky rewards,

some differences are observed as well. Using a formal
conjunction analysis, Peters & Büchel [100] found that, as pre-

dicted by the unified system perspective, the same striatal

voxels represented the subjective value of delayed and risky

rewards, with others showing similar findings in the VMPFC

in a larger sample [100]. Interestingly, in this set of studies,

differences between delay and risk were observed in the PCC

(also typically considered part of the brain’s valuation

system) and the intraparietal sulcus, which might be related

to the episodic memory and future thinking components of

intertemporal choice. This finding suggests the activity in

these specific brain areas would be more consistent with theo-

ries where utility for risk and utility for time are not

equivalent [82,87].

In another approach to examining the neural overlap

between risk and delay, and similarly, to identifying where

their processing might diverge, Luhmann et al. [97] designed

a risky choice paradigm where the only difference between

two conditions was the amount of time subjects knew they

had to wait to receive the outcome of their choice. This allowed

the authors to examine the neural correlates of expected value

modulated by delay. Brain regions that emerged as common to

the immediate and delay conditions included, among others,

the VMPFC, insula and PCC. Most notably, regions that

emerged as unique to the delay condition included parts of

the medial temporal lobe (which, similar to the inferior parietal

regions, is implicated in episodic memory) as well as the

DLPFC [97].

However, while risk and delay were assumed to be inde-

pendent and non-interacting in Luhmann et al. [97], this is

likely not the case given strong theoretical and empirical evi-

dence to the contrary. To account directly for this interaction,

Pine et al. [96] performed a traditional intertemporal choice

experiment but, critically, using similar procedures to those

described above in Lopez-Guzman et al. [89], incorporated a

subject’s idiosyncratic utility function curvature into the esti-

mation of his or her discount rate. This allowed the authors

to construct, for each subject, a risk preference-adjusted dis-

counted subjective value regressor for their fMRI analyses.



choice
impulsivity

risk
preference

PTSD

adolescent 
reckless behaviour 

addiction

anorexia
nervosa

disruptive
impulse control and

conduct disorders

gambling
disorder

distribution of healthy
individualsobsessive

compulsive
pers. disorder

Figure 3. Theoretical space spanned by two orthogonal dimensions: choice impulsivity (i.e. discount rate) and risk preference (i.e. risk attitude parameter). Each vector
represents a deviation from normality that could correspond to a defined psychiatric disorder. At the origin of this space, we locate a two-dimensional distribution that
corresponds to values of choice impulsivity and risk seen in the ‘healthy’ population. PTSD, post-traumatic stress disorder. (Online version in colour.)
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Controlling for undiscounted utility (subjective value of

the delayed option adjusted for a subject’s utility function

curvature, but without the effect of delay), the VMPFC and

striatum emerged as the only regions that tracked discounted

utility (subjective value of the delayed option adjusted for a

subject’s utility function curvature and the effect of delay)

[96]. Interestingly, and providing further support for the uni-

fied system perspective, a conjunction analysis again revealed

that the same striatal voxels represented undiscounted and dis-

counted utility (with each side of the conjunction statistically

controlling for the other; figure 2), further suggesting that

this region might support the integration of undiscounted uti-

lity and delay to drive temporal discounting. Also of note, as

shown behaviourally in Lopez-Guzman et al. [89], the temporal

discounting model that best fit the neural data was the modi-

fied hyperbolic model, providing converging evidence that

the brain implements this particular algorithm [89,96].

In addition to these studies aimed at isolating the neural

representation of discounted utility, another interesting line

of work aims to test the possibility that there might be distinct

sub-circuits within the broader valuation circuit that might

independently support risk versus time preferences. These

sub-circuits may not be detectable with the resolution of

current human neuroimaging techniques but may be amenable

to investigation in animal studies. Recent studies indeed

suggest impulsive choice as measured by temporal discount-

ing could be subserved by projections from ventral and

dorsal striatum to more lateral areas of prefrontal cortex,

while risky choice could be subserved by more ventromedial

corticostriatal projections—including ventral striatum, medial

orbitofrontal cortex, VMPFC and anterior cingulate cortex

[102]. However, this work has not yet attempted to account

for the interaction between risk and time preferences.

Accounting for this interaction could facilitate a more precise
dissection of the neurobiology of impulsive choice at the

level of sub-circuits and neurotransmitter systems.
6. Implications for psychiatry
Much of the proliferation of time preference measures of

impulsive choice in the psychiatric literature is borne out of a

heightened interest in the relationship of this construct to

unhealthy behaviour [103]. On average, temporal discounting

is higher (although distributions overlap) in individuals with

substance use disorders including nicotine, alcohol and illicit

substances like heroin, cocaine and methamphetamine [11]

compared to controls. This finding extends to obesity and over-

eating [104] and, notably, to risky sexual behaviour [105].

These observations have led several experts to suggest that dis-

count rates could be a transdiagnostic marker of ‘pathological

self-control’ [106] and as such could be useful as a predictive

measure in at-risk populations [107]. Beyond diagnosis and

prognosis, discount rates may also track therapeutic response

in addiction [108] and obesity [109]. Recent reports suggest

that within some clinical populations, individual differences

in discounting could also aid in stratifying patients by their

risk for treatment failure, which may prove useful for person-

alized treatment selection [110]. Perhaps one of the most

compelling arguments for the focus on discounting measures

in psychiatry is that their neural correlates are now fairly well

known, and these behavioural tests can therefore reflect, in a

more measurable way, the current biological state of the neuro-

circuitry that supports them. For example, ample evidence on

the functional interaction between the DLPFC and key areas

of the valuation network like VMPFC [111–113], indicates

DLPFC may modulate the contextual flexibility of value rep-

resentation for intertemporal choice. Interventions that target
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the DLPFC could, therefore, strengthen this modulatory effect

and be useful therapeutically [114,115]. Having a cheap behav-

ioural readout of this neurobiological effect is thus of great

utility to psychiatry.

A key implication of the work discussed here is that the

psychological basis of impulsive choice as measured by stan-

dard test instruments can be biased by an individual

preference for risk. Individuals who are more risk averse can

be misidentified as more impulsive if risk attitudes are not

measured directly. Fortunately, evidence from neuroimaging

and studies of impulse control disorders suggests that risk pre-

ferences do not account for the majority of the variance in

discount rates—even when the empirical techniques used

entangle the two measurements; rather the two appear to be

partly independent contributors to impulsive choice. This

means that we are not suggesting all results reported in the

literature are invalidated by the fact that the measurement tech-

niques used may be confounding risk and time preferences.

However, in some particular psychiatric conditions, risk and

time preferences may be going in the opposite direction of

that predicted by their relationship described here. Pathologi-

cal gamblers are one clear example of a population that

exhibits both steep discounting of delayed rewards and some-

what reduced risk aversion, and these behavioural profiles are

supported by both common and distinct neural correlates, as

shown by Miedl et al. [99]. In this study, while the subjective

value of all reward types and in all subjects was encoded in

the brain’s valuation system, only encoding of the subjective

value of delayed rewards (but not risky rewards) was more

pronounced in gamblers than in controls in the VMPFC and

striatum. This suggests that our understanding of impulsive

behaviour across a range of psychiatric disorders necessitates

measurement of both discount rates and the curvature of the

utility function (risk preference), among other variables, and

their corresponding neural correlates. Measuring only the dis-

count rate can confound interpretation of the primary drivers

of why individuals discount delayed rewards at different
rates and impulsive choice [116] and can obscure potentially

important neurobiological targets for intervention.

We propose that both time and risk should be thought of in

their dimensional nature with respect to their utility in psychia-

try (figure 3). For example, individuals with anorexia nervosa

exhibit lower discount rates than controls [117], that is, they

are perhaps pathologically patient. People suffering from anor-

exia are described clinically as exhibiting an ‘undue influence

of body shape and weight on self-evaluation’ that guides

their behaviour towards future goals of achieving a desired

improvement, by restricting and titrating their energy intake

and being prone to overexert in a constant attempt to lose

weight. In this perspective, discounting embodies a behaviour-

al dimension where either extreme is undesirable. The same

can be said for attitudes towards risk. Excessive aversion to

risk is maladaptive, as most situations in the world carry

some level of uncertainty, and an inability to engage with

these situations can lead to avoidance and extreme anxiety.

Some reports indicate that individuals with anxiety disorders

and phobias are more risk averse than controls [118]. On the

other side of the spectrum, excessive tolerance or love of risk

can obviously also be similarly detrimental, e.g. leading an

individual to gamble insensibly [119], or to seek and engage

in risky situations like high-risk sexual or drug consumption

practices [120,121]. If these dimensions are not fully orthogona-

lized, that is, if there are unaccounted for interactions between

them, this proposed mapping will be distorted, and separabil-

ity of these disorders may not be readily achievable. Biases

introduced in the evaluation of time preferences could thus

compromise their true translational utility. Future work focus-

ing on time and risk preference, especially when measured in

clinical populations, should be mindful of their interaction.
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Verdejo-Garcia A. 2014 Monetary delay discounting
in gambling and cocaine dependence with
personality comorbidities. Addict. Behav.
39, 1658 – 1662. (doi:10.1016/j.addbeh.
2014.06.001)

27. Dombrovski AY, Szanto K, Siegle GJ, Wallace ML,
Forman SD, Sahakian B, Reynolds CF, Clark L. 2011
Lethal forethought: delayed reward discounting
differentiates high- and low-lethality suicide
attempts in old age. Biol. Psychiatry 70, 138 – 144.
(doi:10.1016/j.biopsych.2010.12.025)

28. Levy I, Rosenberg Belmaker L, Manson K, Tymula A,
Glimcher PW. 2012 Measuring the subjective value
of risky and ambiguous options using experimental
economics and functional MRI methods. J. Vis. Exp.
JoVE 67, e3724. (doi:10.3791/3724)

29. Admon R, Bleich-Cohen M, Weizmant R, Poyurovsky
M, Faragian S, Hendler T. 2012 Functional and
structural neural indices of risk aversion in
obsessive-compulsive disorder (OCD). Psychiatry
Res. 203, 207 – 213. (doi:10.1016/j.pscychresns.
2012.02.002)

30. Brand M, Roth-Bauer M, Driessen M, Markowitsch
HJ. 2008 Executive functions and risky decision-
making in patients with opiate dependence. Drug
Alcohol Depend. 97, 64 – 72. (doi:10.1016/j.
drugalcdep.2008.03.017)

31. Gowin JL, Mackey S, Paulus MP. 2013 Altered risk-
related processing in substance users: imbalance of
pain and gain. Drug Alcohol Depend. 132, 13 – 21.
(doi:10.1016/j.drugalcdep.2013.03.019)

32. Chapman GB. 1996 Temporal discounting and
utility for health and money. J. Exp. Psychol. Learn.
Mem. Cogn. 22, 771 – 791. (doi:10.1037/0278-7393.
22.3.771)

33. Frederick S, Loewenstein G, O’Donoghue T. 2002
Time discounting and time preference: a critical
review. J. Econ. Lit. 40, 351 – 401. (doi:10.1257/jel.
40.2.351)

34. Loewenstein G, Prelec D. 1992 Anomalies in
intertemporal choice: evidence and an
interpretation. Q. J. Econ. 107, 573 – 597. (doi:10.
2307/2118482)

35. Epper T, Fehr-Duda H. 2012 The missing link:
Unifying risk taking and time discounting [Internet].
Department of Economics - University of Zurich
[cited 2016 Nov 29]. Report No.: 096. See https://
ideas.repec.org/p/zur/econwp/096.html.

36. Halevy Y. 2008 Strotz meets allais: diminishing
impatience and the certainty effect. Am.
Econ. Rev. 98, 1145 – 1162. (doi:10.1257/aer.
98.3.1145)

37. Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS,
Quinn K, Sanislow C, Wang P. 2010 Research
domain criteria (RDoC): toward a new classification
framework for research on mental disorders.
Am. J. Psychiatry 167, 748 – 751. (doi:10.1176/appi.
ajp.2010.09091379)

38. Carcone D, Ruocco AC. 2017 Six years of research on
the national institute of mental health’s research
domain criteria (RDoC) initiative: a systematic
review. Front. Cell Neurosci. 11, 46. (doi:10.3389/
fncel.2017.00046)

39. Ferrante M, Redish AD, Oquendo MA, Averbeck BB,
Kinnane ME, Gordon JA. 2018 Computational
psychiatry: a report from the 2017 NIMH workshop
on opportunities and challenges. Mol. Psychiatry.
(doi:10.1038/s41380-018-0063-z)

40. Ainslie GW. 1974 Impulse control in pigeons. J. Exp.
Anal. Behav. 21, 485 – 489. (doi:10.1901/jeab.1974.
21-485)
41. Ainslie G. 1975 Specious reward: a behavioral theory
of impulsiveness and impulse control. Psychol. Bull.
82, 463 – 496. (doi:10.1037/h0076860)

42. Green L, Myerson J. 2004 A discounting framework
for choice with delayed and probabilistic rewards.
Psychol. Bull. 130, 769 – 792. (doi:10.1037/0033-
2909.130.5.769)

43. Kable JW, Glimcher PW. 2007 The neural correlates
of subjective value during intertemporal choice. Nat.
Neurosci. 10, 1625 – 1633. (doi:10.1038/nn2007)

44. Laibson D. 1997 Golden eggs and hyperbolic
discounting. Q. J. Econ. 112, 443 – 478. (doi:10.
1162/003355397555253)

45. Mischel W, Ebbesen EB. 1970 Attention in delay of
gratification. J. Pers. Soc. Psychol. 16, 329 – 337.
(doi:10.1037/h0029815)

46. Thaler R. 1981 Some empirical evidence on dynamic
inconsistency. Econ. Lett. 8, 201 – 207. (doi:10.1016/
0165-1765(81)90067-7)

47. Samuelson P. 1937 A note on measurement of
utility. Rev. Econ. Stud. 4, 155 – 161. (doi:10.2307/
2967612)

48. Benzion U, Rapoport A, Yagil J. 1989 Discount
rates inferred from decisions: an experimental
study. Manag. Sci. 35, 270 – 284. (doi:10.1287/
mnsc.35.3.270)

49. Chapman GB, Elstein AS. 1995 Valuing the future:
temporal discounting of health and money. Med.
Decis. Mak. Int. J. Soc. Med. Decis. Mak. 15,
373 – 386. (doi:10.1177/0272989X9501500408)

50. Mazur JE, Biondi DR. 2009 Delay – amount tradeoffs
in choices by pigeons and rats: hyperbolic versus
exponential discounting. J. Exp. Anal. Behav. 91,
197 – 211. (doi:10.1901/jeab.2009.91-197)

51. Pender JL. 1996 Discount rates and credit
markets: theory and evidence from rural India.
J. Dev. Econ. 50, 257 – 296. (doi:10.1016/S0304-
3878(96)00400-2)

52. Redelmeier DA, Rozin P, Kahneman D. 1993
Understanding patients’ decisions: cognitive and
emotional perspectives. JAMA 270, 72 – 76. (doi:10.
1001/jama.1993.03510010078034)

53. Kirby KN. 1997 Bidding on the future: evidence
against normative discounting of delayed rewards.
J. Exp. Psychol. 126, 54. (doi:10.1037/0096-3445.
126.1.54)
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