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Key Points

Question

Can tools from computational psychiatry and decision neuroscience be used to understand and assess
prospective opioid reuse risk?

Findings

This longitudinal study serially examined computational markers of risky decision-making in
individuals who use opioids, studied over 7 months of treatment. An increase in an individual marker of
tolerance to ambiguity (a context in which there is limited information about environmental risk) was
significantly tied to imminent opioid use (within 1-4 weeks) in a manner statistically independent of
standard clinical factors associated with opioid use.

Meaning

In this study, computational markers of risky decision-making capture distinct latent cognitive
processes with clinical utility for detecting opioid reuse vulnerability.

Abstract

Importance

Opioid addiction is a major public health problem. Despite availability of evidence-based treatments,
relapse and dropout are common outcomes. Efforts aimed at identifying reuse risk and gaining more
precise understanding of the mechanisms conferring reuse vulnerability are needed.

Objective

To use tools from computational psychiatry and decision neuroscience to identify changes in decision-
making processes preceding opioid reuse.

Design, Setting, and Participants

https://www.ncbi.nlm.nih.gov/pmc/about/copyright/


A cohort of individuals with opioid use disorder were studied longitudinally at a community-based
treatment setting for up to 7 months (1-15 sessions per person). At each session, patients completed a
risky decision-making task amenable to computational modeling and standard clinical assessments.
Time-lagged mixed-effects logistic regression analyses were used to assess the likelihood of opioid use
between sessions (t to t + 1; within the subsequent 1-4 weeks) from data acquired at the current session
(t). A cohort of control participants completed similar procedures (1-5 sessions per person), serving
both as a baseline comparison group and an independent sample in which to assess measurement test-
retest reliability. Data were analyzed between January 1, 2018, and September 5, 2019.

Main Outcomes and Measures

Two individual model-based behavioral markers were derived from the task completed at each session,
capturing a participant’s current tolerance of known risks and ambiguity (partially unknown risks).
Current anxiety, craving, withdrawal, and nonadherence were assessed via interview and clinic records.
Opioid use was ascertained from random urine toxicology tests and self-reports.

Results

Seventy patients (mean [SE] age, 44.7 [1.3] years; 12 women and 58 men [82.9% male]) and 55 control
participants (mean [SE] age, 42.4 [1.5] years; 13 women and 42 men [76.4% male]) were included. Of
the 552 sessions completed with patients (mean [SE], 7.89 [0.59] sessions per person), 252 (45.7%)
directly preceded opioid use events (mean [SE], 3.60 [0.44] sessions per person). From the task
parameters, only ambiguity tolerance was significantly associated with increased odds of prospective
opioid use (adjusted odds ratio, 1.37 [95% CI, 1.07-1.76]), indicating patients were more tolerant
specifically of ambiguous risks prior to these use events. The association of ambiguity tolerance with
prospective use was independent of established clinical factors (adjusted odds ratio, 1.29 [95% CI, 1.01-
1.65]; P = .04), such that a model combining these factors explained more variance in reuse risk. No
significant differences in ambiguity tolerance were observed between patients and control participants,
who completed 197 sessions (mean [SE], 3.58 [0.21] sessions per person); however, patients were more
tolerant of known risks (B = 0.56 [95% CI, 0.05-1.07]).

Conclusions and Relevance

Computational approaches can provide mechanistic insights about the cognitive factors underlying
opioid reuse vulnerability and may hold promise for clinical use.

Introduction

For the first time, drug overdose is the leading cause of unintentional death in the United States.
Opioids, including heroin and more recently fentanyl, account for the largest proportion of these lethal
intoxications.  Despite these risks and the availability of evidence-based treatments for opioid use1,2,3,4
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disorder (OUD), high rates of reuse, relapse, and treatment dropout are common,  suggesting that a
core cognitive process conferring opioid use vulnerability may be associated with increased tolerance
for risk.

Prior studies have indeed identified aspects of risky decision-making relevant to OUD diagnosis and
clinical course.  In cross-sectional studies, individuals who used opioids compared
with control participants demonstrate deficits in detecting risk  and learning from rewards and
punishments.  Further work has also suggested that risk-taking may be associated with
negative long-term outcomes, such as relapse.  Important questions remain unanswered, however,
beyond cross-sectional differences in these global constructs. Most notably, it is unknown whether these
between-participant findings capture traitlike features of OUD or statelike features associated with
fluctuating vulnerability for opioid seeking and use. To resolve the precise association between risky
decision-making and opioid use vulnerability, a longitudinal within-participant assessment that parses
risk-taking into its constituent components is needed.

Decades of work in psychology and economics has decomposed the global propensity for risk-taking
into 2 interconnected but theoretically,  neurobiologically,  and developmentally
separable components: tolerance for known risks and tolerance for unknown, or ambiguous, risks.
More recently, this distinction has also entered clinical neuroscience.  Known-risk tolerance is
defined by a willingness to accept courses of action for which the precise odds of a given outcome are
known. Ambiguity tolerance is instead defined by a willingness to accept actions for which these odds
are not fully known or cannot be estimated. This distinction is relevant for most real-world decisions, in
which exact outcome probabilities are rarely fully known ; however, its relevance for OUD has not
been explicitly tested, because most tasks or analytic approaches commonly used in the clinical
literature assess a mixture of these 2 behavioral components.  Tasks or approaches that draw on the
economics (and more broadly on decision neuroscience) literature have several theoretical and practical
advantages in this regard. By design, these tasks or approaches orthogonalize the contribution of
known-risk and ambiguity to the characterization of individual risk-taking, allowing these measures to
be independently derived. They also probe preference-based behavior in the absence of a learning
requirement (which poses challenges for repeated-measures designs). Finally, although less common in
clinical research, as reviewed, these tasks or approaches are well-established in basic science and are
growing in use in other fields as well.

Leveraging these tools, we examined whether known-risk tolerance, ambiguity tolerance, or both are
associated with episodic opioid use among individuals receiving treatment in a real-world community-
based setting. We focused on this population because opioid reuse typically precipitates treatment
failure,  and given potential interactions with maintenance pharmacotherapy (via methadone or
buprenorphine), it increases risk for medical complications and overdose.  We further embedded our
assessments within the naturalistic conditions of patients’ treatment trajectories, enabling us to
temporally link our measures to opioid use while accounting for other time-varying factors (eg, craving,
nonadherence).

Methods
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Participants

Participants were individuals with OUD receiving medication-assisted outpatient treatment and
sociodemographically similar control participants. We primarily recruited patients having recently
initiated treatment (within ≤1 month) who were expected to concomitantly use opioids within 6
months ; those with more than 1 month in treatment reporting frequent use were also recruited. All
participants provided written informed consent in accordance with procedures approved by the New
York University School of Medicine institutional review board.

Inclusion criteria were 18 years or older and the ability to read and understand English. Patients
additionally needed to have an expressed goal of achieving opioid abstinence. Exclusion criteria were
(1) primary substance use other than opioids; (2) a history of head trauma, loss of consciousness longer
than 30 minutes, or neurologic disease; (3) untreated or unstable medical conditions, including liver
enzyme levels more than 3 times the normal range and CD4 counts less than 500 cells/μL (AIDS at
stage 2 or greater); (4) untreated or unstable psychiatric conditions, including a current manic episode,
active psychosis, or suicidal ideation; and (5) a failure to understand or comply with study procedures.
Control participant–specific exclusion criteria were (6) a history of substance abuse (except for nicotine
and alcohol use restricted to college or military service); and (7) a urine drug screening with positive
results. Inclusion and exclusion criteria were ascertained during a comprehensive interview including
the Addiction Severity Index  and by consulting clinic records.

Fifteen patients were excluded; 11 did not understand the task, as evidenced by self-report or poor-
quality data (eMethods in the Supplement), 1 later disclosed no desire to achieve abstinence, and 3 had
an exclusionary result of a neurologic history. In addition, 4 control participants were excluded; 3 did
not understand the task, and 1 tested positive for cocaine at session 2.

Study Timeline and Procedures

Data were collected between March 5, 2015, and August 29, 2017. Patients completed up to 15 sessions
over 7 months (Figure 1). Because the period of early recovery is associated with highest relapse and
overdose risk,  we sampled this period most densely: the first 8 sessions were scheduled weekly, the
following 4 sessions biweekly, and the final 3 monthly. Control participants completed up to 5 weekly
sessions. This allowed us to investigate most clinical events of interest in patients, as well as assess
parameter test-retest reliability in control participants. The number of sessions completed differed
across participants because of scheduling conflicts, treatment dropout or transfer, and loss to follow-up
(eMethods and eFigures 1-3 in the Supplement).

At each session, participants completed clinical assessments and a risky decision-making task.
Participants additionally completed a temporal-discounting task as part of a separate study that will be
reported elsewhere.

Risky Decision-making Task and Computational Modeling
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Individual known-risk and ambiguity tolerance were estimated on a well-validated task.  On each
trial, participants chose between a guaranteed $5 and a lottery (Figure 2A). Each lottery had 2 possible
outcomes: v or $0, where v ranged from $5 to $66. On half of the trials, v could be received with 1 of 3
known probabilities (p: 25%, 50%, or 75%); on the other half, the probability information was occluded
and thus incompletely known (the ambiguity context). We used 3 levels of ambiguity, termed A: low
(24% unknown), medium (50% unknown), and high (74% unknown). Each amount v appeared with
each p and A level once in random order over 4 blocks of 30 trials (for 120 trials). So-called catch trials
offering a guaranteed $5 vs a 50% chance of $4 were also included at the start of each block.

Participants were instructed that each lottery corresponded to a physical bag containing 100 red and
blue chips. The bags were always nearby, and participants could inspect them after the experiment if
they wished. For known-risk lotteries, the precise number of red and blue chips in the corresponding
bags was specified. For ambiguous lotteries, only partial information was provided, but to eliminate
bias, the number of red and blue chips were made equal in the ambiguous displays. To incentivize
participants to choose according to their true preferences, compensation was $10 per session plus a
variable bonus. At the conclusion of each session, 1 trial was randomly selected for realization, and the
choice made on that trial determined the bonus ($5 or the lottery amount; Figure 2A). No bonus was
received for missed responses.

As in prior work,  we modeled participants’ choice data with a power utility model that
separately parameterizes known-risk and ambiguity tolerance.  Here, the expected utility (EU) of each
option (guaranteed or lottery) on each trial is given by

where v is the winning amount, p is the probability of winning, A is the fraction of p that is unknown, α
is a participant-specific known-risk tolerance parameter, and β is a participant-specific ambiguity
tolerance parameter. An α of 1 indicates risk neutrality, α less than 1 indicates risk aversion, and α
greater than 1 indicates risk seeking. A β of 0 indicates ambiguity neutrality, a β greater than 0
indicates ambiguity aversion (pessimism about the hidden probability of winning v), and a β less than 0
indicates ambiguity seeking (optimism about the hidden probability of winning v). To estimate α and β
using maximum-likelihood estimation in MATLAB version R2018a (MathWorks), we fit a probabilistic
choice function to the trial-by-trial data:

where Pr is the probability the lottery is chosen, EU  and EU  are the expected utilities (from
the first equation) of the lottery and guaranteed options, respectively, and μ is a third participant-
specific parameter capturing choice stochasticity. For ease of interpretation, we report 1 − β such that
higher values indicate higher ambiguity tolerance. We also report natural log-transformed values of α
and μ, because these data were nonnormally distributed.
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Clinical Variables Collected at Each Session

At each session, anxiety was assessed with the State-Trait Anxiety Inventory,  and withdrawal was
assessed with the Subjective Opiate Withdrawal Scale.  Opioid craving was assessed with a visual
analog scale for the period spanning the past 7 days, including the session date. Treatment adherence
was quantified as the proportion of confirmed dispensed medication doses in the period since the last
study session (while nonadherence was defined as 1 − adherence; eMethods in the Supplement in the
details).

Opioid Use

Positive use was defined as any illicit opioid use self-reported on a timeline followback  completed at
each session or a positive or scheduled but refused or not completed urine toxicology test in the period
between study sessions. Random (approximately weekly) urine tests were administered by the clinic;
results of these tests were obtained from clinic records. For control participants, a urine test was
administered at each session (eMethods in the Supplement for details).

Statistical Analysis

Data were analyzed between January 1, 2018, and September 5, 2019. Our primary analysis was time-
lagged mixed-effects logistic regression, with the presence or absence of opioid use between sessions t
and t + 1 as the outcome variable, and the model-derived decision-making parameters at session t as
independent variables (Figure 3A shows illustrative examples of how the data were parsed for each
participant). This analysis estimates the likelihood of opioid use after sessions when an individual is
more tolerant of known risks or ambiguity compared with when the same individual is less tolerant of
known risks or ambiguity. Extensions included the time-varying clinical variables (anxiety, craving,
withdrawal, nonadherence, and recent use) as independent variables. In exploratory analyses, we
examined diagnostic group differences in decision-making. Because groups differed in education,
race/ethnicity, income, and baseline depression and anxiety levels (Table 1), these variables were
included as nuisance covariates. All models were estimated in MATLAB version R2018a (MathWorks)
using fitglme and included random intercepts for participant and session. Except for urine drug
screenings, where scheduled but refused or not completed tests were considered to have positive results,
we did not impute missing data. Missing data were censored (eMethods in the Supplement).

Results

Table 1 provides demographic and clinical information on the final sample. Eighty-five individuals with
OUD and 59 control participants were recruited. After exclusions, 70 patients (mean [SE] age, 44.7
[1.3] years; 12 women and 58 men [82.9% male]) and 55 control participants (mean [SE] age, 42.4
[1.5] years; 13 women and 42 men [76.4% male]) were included in analyses. Of the patients recruited,
55 (79%) had recently initiated treatment (within ≤1 month). Of the sessions completed, following
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data-quality exclusions (eMethods in the Supplement), a total of 749 sessions (89.6%) were retained for
analysis (552 for patients; mean [SE], 7.89 [0.59] sessions per person; 197 sessions for control
participants; mean [SE], 3.58 [0.21] sessions per person).

Both known-risk and ambiguity tolerance demonstrated good test-retest reliability in control
participants. Figure 2B shows pairwise correlations for each parameter across sessions (r range, 0.31-
0.82; mean [SE] r, 0.62 [0.03]). The 1 − k intraclass correlation coefficient for known-risk tolerance,
computed for the 25 control participants with data for all 5 sessions, was 0.87 (95% CI, 0.77-0.94), and
for ambiguity tolerance, it was 0.89 (95% CI, 0.81-0.95). Importantly, as previously reported,
the 2 parameters were largely uncorrelated (r range, −0.30 to 0.19; mean [SE] r, 0.01 [0.02]; Figure 2
C), confirming they captured distinct aspects of participants’ risk-taking behavior.

Time-Lagged Association of Decision-making Parameters With Prospective Opioid Use

By contrast, the task parameters in patients demonstrated higher variability as captured by lower,
though still moderate, intraclass correlation coefficients (eResults in the Supplement), perhaps
reflecting in part fluctuating vulnerability in this group. Indeed, of 552 sessions completed with
patients, 271 sessions (49.1%) involved positive results for recent opioid use (mean [SE], 3.87 [0.43]
sessions per person) and 252 sessions (45.7%) involved positive results for prospective (immediate
future) use (mean [SE], 3.60 [0.44] sessions per person); a determination regarding prospective use
could not be made in 22 sessions (eMethods in the Supplement).

To examine if we could identify when opioid use was likely to occur, we performed time-lagged
analyses with the 2 risk-taking parameters and (for completeness) choice stochasticity as independent
variables. We found a significant effect for ambiguity tolerance but not known-risk tolerance or choice
stochasticity, such that holding the other factors constant, a 1 − SD increase in ambiguity tolerance was
associated with a 37% increase in the odds of prospective use (adjusted odds ratio, 1.37 [95% CI, 1.07-
1.76]; Table 2; Figure 3B). This association was present at the shortest timescale examined (within the
first 8 sessions; eTable 1 in the Supplement); it was also robust to potential medication confounds
(eTable 2 in the Supplement) and our opioid use–labeling scheme (eTable 3 in the Supplement).

Time-Lagged Association of Clinical Variables With Prospective Opioid Use

It is possible that ambiguity tolerance covaries with another variable, explaining its association with
prospective use. We therefore repeated our analysis, adding anxiety, craving, withdrawal, recent
treatment compliance (nonadherence), and recent opioid use to the model. However, as shown in 
Table 2 and Figure 3C, the coefficient for ambiguity tolerance in this extended model remained
significant (adjusted odds ratio, 1.29 [95% CI, 1.01-1.65]) and was only modestly reduced in
magnitude. Recent opioid use (adjusted odds ratio, 2.79 [95% CI, 1.74-4.45]), opioid craving (adjusted
odds ratio, 1.38 [95% CI. 1.06-1.81]), and nonadherence (adjusted odds ratio, 1.36 [95% CI, 1.03-1.79])
were also significant. This indicates that, while the contribution of ambiguity tolerance to the
identification of prospective opioid use risk was somewhat lower, although comparable, with that of

25,28,30,31

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6902203/figure/yoi190087f2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6902203/figure/yoi190087f2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6902203/table/yoi190087t2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6902203/figure/yoi190087f3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6902203/table/yoi190087t2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6902203/figure/yoi190087f3/


well-established clinical associated factors (eg, craving), it was independent of these factors. Expressed
another way, the full model, including ambiguity tolerance alongside these clinical factors, relative to
one without ambiguity tolerance, accounted for more variance explained in reuse risk and emerged as
the better model in a formal theoretical likelihood ratio test (likelihood ratio test, 4.19; P = .04; eTable
4 in the Supplement). The same comparison with a reduced, so-called best model (made up only of
craving, nonadherence, and recent use) also showed an advantage of including ambiguity tolerance,
although the likelihood ratio statistic was reduced to nonsignificance (eTable 5 in the Supplement).

Diagnostic Group Differences in Decision-making Parameters

Finally, we examined aggregate-level differences between groups. Individuals who used substances are
reported to be more risk-taking than control participants,  but it is unknown which
component underlies this difference and whether the behavioral phenotypes distinguishing individuals
who use from control participants are those also contributing to ongoing drug-use vulnerability.
Although most participants were risk averse and ambiguity averse (eFigure 4 in the Supplement),
patients had a generally higher known-risk tolerance than control participants (B = 0.56 [95% CI, 0.05-
1.07]). Patients also tended to have more stochastic choice behavior, but no significant differences were
observed in ambiguity tolerance (eTable 6 in the Supplement).

Discussion

Individuals who continue opioid use during treatment face many health risks, as well as risk of
treatment failure. We reasoned that measurable changes in risk tolerance could signal reuse
vulnerability and approached this by sampling the decision-making behavior of individual patients over
several months of treatment. By applying a decision neuroscience framework that experimentally and
computationally dissociates known risk and ambiguity, we aimed to link these measures to opioid use
on a clinically actionable week-to-week timescale.

We found increased ambiguity tolerance was associated with prospective opioid use. By contrast,
despite evidence that known-risk tolerance was elevated in patients relative to control participants, we
did not find evidence that it was associated with opioid reuse at the current temporal resolution. These
findings refine our understanding of the role of risky decision-making in addiction
by identifying subtypes of risk that map onto different OUD features. While ambiguity tolerance might
track discrete changes underlying ongoing opioid use vulnerability, known-risk tolerance might reflect
traitlike features that confer vulnerability at longer timescales. Indeed, extensive data indicate known-
risk attitudes are remarkably stable,  while ambiguity attitudes may be more malleable and
susceptible to changes in physiological arousal and other cognitive or emotional states.

Theoretical model–derived measures present some advantages over simpler behavioral summaries in
that, by design, they yield lower construct measurement error, a highly desirable feature for clinical
translation. Our 2 specific measures have been previously validated in diverse populations as separable
components of an individual’s global propensity for risk-taking.  This specificity allows us to
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make more precise interpretations regarding the latent processes involved here. For example, it is easy
to imagine an individual who is even momentarily more tolerant of ambiguity may enter situations
where the risk of substance use is ambiguous or may use substances because the risk of treatment
failure is ambiguous. Indeed, it is almost impossible to precisely estimate the odds of these and most
other real-world negative outcomes, and previous work indicates that even healthy individuals exhibit a
so-called optimism bias in this regard.

We also found that both known-risk and ambiguity tolerance exhibited good test-retest reliability in a
control cohort without changes in opioid use vulnerability. These data provide further confidence that
the observed changes across sessions in patients are likely attributable to factors other than
measurement noise. As expected, intraclass correlation coefficients were lower in patients but still
indicated moderate to good reliability and hence not very high within-participant variability. Thus, for
guiding future research, both parameters could be considered to have acceptable levels of reliability,
while also being sensitive to both stable and fluctuating OUD features.

In addition to providing novel mechanistic insights, we note our general approach may also prove
practically useful. Our initial findings suggest that the contribution of ambiguity tolerance to
prospective opioid reuse assessment was comparable with that of well-established clinical factors, such
as craving, but was statistically independent of these factors. Combining the 2 thus explained more
variance in reuse risk. This suggests that, with further testing, these measures could be combined into
improved clinical-risk assessment tools.

Limitations

While this study is first, to our knowledge, to perform this many repeated measures of decision-making
in a real-world OUD population, making it uniquely possible (relative to cross-sectional designs) to
examine time-lagged associations with fluctuating clinical events, we achieved a long follow-up by
reducing sampling frequency. To better define the timescale at which ambiguity tolerance and other
measures best capture ongoing vulnerability, more finely sampled data will be required. Translating
these measures to mobile platforms that permit real-time assessment will address this goal, as already
demonstrated for other cognitive and affective processes in OUD.  These efforts could also be used to
test whether other factors, such as stress exposure and fluctuating mood (including depression), that are
known to affect patient outcomes,  are captured by or associated with changes in decision-making.
Second, our objective in this study was to capture concomitant opioid use under naturalistic conditions;
as such, given design and power considerations, we were unable to formally assess other relevant
outcomes (eg, treatment response) or generalizability to other types of substance use. Future studies
could use more structured cohort designs and inclusion criteria to address associations with these
additional outcomes.

Conclusions
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Identifying factors robustly associated with opioid reuse that can provide mechanistic insights regarding
the underlying cognitive process involved is important for more targeted intervention and reducing
reliance on postevent responding (eg, following reuse), which may come too late in the treatment failure
cascade. Our initial data suggest that 1 component of risk-taking, ambiguity tolerance, may provide
clinically useful information regarding this prospective risk.
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Figures and Tables

Figure 1.

Longitudinal Study Design and Procedures

Participants with opioid use disorder completed up to 15 study sessions over 7 months. Control participants completed up to 5
sessions. Each session was made up of the decision-making task and clinical assessments of anxiety, craving, withdrawal, and
adherence to treatment. Illicit opioid use was ascertained by random urine toxicology tests and self-reports.

Figure 2.

Decision-making Task and Model-Derived Parameter Test-Retest Reliability

A, Example task trial sequence. In known-risk trials, participants chose between a guaranteed $5 and a lottery that was defined

by an explicit probability (p) (either 25%, 50%, or 75%) of receiving $5 to $66 (v). In ambiguity trials, the lotteries were

defined by a partially unknown probability (ambiguity level, A), where either 24%, 50%, or 74% of the probability information
was occluded and thus unknown. In the example shown, the probability of receiving $66 is anywhere between 25% and 75%. In
reality, the true underlying probability in ambiguity trials was fixed at 50%. At the end of the task, a single trial was selected at
random and played out to determine a participant’s bonus for the session completed, either $5 (if the guaranteed option was
chosen on the selected trial) or by playing the lottery, which involved drawing a chip from the corresponding lottery bag to earn

either v or $0 instead. No outcomes were shown during the task. B, Both model-derived known-risk and ambiguity tolerance
parameters exhibited good test-retest reliability in control participants tested up to 5 times approximately 1 week apart. C, The
2 parameters were largely uncorrelated with each other across sessions. ITI indicates intertrial interval.



Figure 3.

Time-Lagged Association With Prospective Opioid Use

A, Raw data showing the ambiguity tolerance and opioid-use trajectories of 2 participants with opioid use disorder, illustrating
how sessions were parsed in the group-level time-lagged analysis assessing prospective opioid use. B, Standardized odds ratios
from the decision-making parameters only model as factors associated with prospective opioid use and expected probability of
opioid use as a function of ambiguity tolerance level (based on the fitted parameter estimates from Table 2), showing opioid use
was more likely than not to occur when a patient’s ambiguity tolerance surpassed the level observed in control participants and
prior to ambiguity neutrality. The blue line in A and B represents the mean ambiguity tolerance observed in control
participants; the line where ambiguity tolerance equals 1 on the y-axis represents ambiguity neutrality. The dark gray zone in B,
demarcates an anticipated high opioid use–risk state. C, Standardized odds ratios from the full model, including the decision-
making parameters and time-varying clinical variables as factors associated with prospective opioid use (Table 2; combined
model).

Table 1.

Demographic and Clinical Characteristics of the Study Sample



Abbreviations: NA, not applicable; OUD, opioid use disorder.

Education data are missing for 9 participants with OUD and 1 control participant.

Characteristics Mean (SE) Test P
Value

Participants With OUD (n 
= 70)

Control Participants (n 
= 55)

Demographic

Age, y 44.7 (1.3) 42.36 (1.5) t  = 

1.17

.24

Sex, No.

Male 58 42 χ  = 
0.81

.37

Female 12 13

Race, No.

African American 20 28 χ  = 
9.13

.01

White 48 23

Other 2 4

Ethnicity, No.

Hispanic 24 10 χ  = 
4.03

.045

Non-Hispanic 46 45

Education, y 12.00 (0.24) 14.61 (0.27) t  = 

7.10

<.001

Nonverbal IQ score 92.47 (1.88) 95.08 (2.56) t  = 

0.81

.42

Numeracy score 3.78 (0.12) 3.75 (0.20) t  = 

0.14

.89

Income per mo, median (range), $ 650 (0-20 600) 1000 (0-8000) z = 2.26 .02

Psychiatric Attributes and Substance Use

Beck Depression Inventory–II score 15.55 (1.42) 4.69 (0.74) t  = 

6.44

<.001

Beck Anxiety Inventory score 17.61 (1.52) 3.27 (0.71) t  = 

8.05

<.001

Fägerstrom Test for Nicotine Dependence
score

3.83 (0.30) 2.00 (0.75) t  = 

2.27

.03

Lifetime use, y

Alcohol 20.92 (1.79) NA NA NA

Cocaine 14.22 (1.66) NA NA NA
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2
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113
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94
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112
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60
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Kaufman Brief Intelligence Test: normative data suggest that scaled scores between 85 and 115 constitute the mean nonverbal
IQ of the population. These data are missing for 23 participants with OUD and 6 control participants.
Numeracy module of the Health and Human Services Survey, with a range of 0 to 6 points; numeracy data are missing for 11

participants with OUD.
Income data are missing for 11 participants with OUD and 1 control participant.
Beck Depression Inventory (range, 0-63 points). Depression severity cutoff scores for the inventory are as follows: 0 to 13

points, minimal depression; 14 to 19 points, mild depression; 20 to 28 points, moderate depression; and 29 to 63 points, severe
depression. These data are missing for 15 participants with OUD and 7 control participants.
Beck Anxiety Inventory (range, 0-63 points). Anxiety severity cutoff scores are as follows: 0 to 9 points, minimal anxiety; 10

to 16 points, mild anxiety; 17 to 29 points, moderate anxiety; and 30 to 63 points, severe anxiety. These data are missing for 14
participants with OUD and 7 control participants.
Fägerstrom Test for Nicotine Dependence: data shown are for current smokers: 53 participants with OUD and 9 control

participants.
56 Participants.
47 Participants.
38 Participants.

Table 2.

Time-Lagged Association of Task and Clinical Variables With Prospective Opioid Use
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Abbreviations: AIC, Akaike information criterion; BIC, bayesian information criterion; NA, not applicable.

Model B (SE) [95% CI] t
Statistic

P
Value

Standardized Odds

Ratio

Decision-making Parameters

No. of observations 530 NA NA NA

df 526 NA NA NA

AIC 636.6 NA NA NA

BIC 662.3 NA NA NA

Log-likelihood –312.3 NA NA NA

Intercept –0.262 (0.367) [–0.984 to
0.459]

–0.714 .48 0.898

Known-risk tolerance: log(α) –0.004 (0.237) [–0.469 to
0.461]

–0.016 .99 0.997

Ambiguity tolerance: 1–β 0.629 (0.256) [0.127-1.132] 2.461 .01 1.369

Choice stochasticity: log(μ) 0.096 (0.224) [–0.344 to 0.537] 0.429 .67 1.076

Decision-making Parameters and Time-Varying Clinical Variables

No. of observations 478 NA NA NA

df 469 NA NA NA

AIC 562.4 NA NA NA

BIC 608.2 NA NA NA

Log-likelihood –270.2 NA NA NA

Intercept –1.079 (0.536) [–2.133 to –
0.026]

–2.014 .045 0.556

Known-risk tolerance: log(α) 0.081 (0.224) [–0.359 to 0.522] 0.363 .72 1.064

Ambiguity tolerance: 1 – β 0.504 (0.248) [0.016-0.992] 2.029 .04 1.289

Choice stochasticity: log(μ) –0.128 (0.222) [–0.565 to
0.309]

–0.575 .57 0.906

State-Trait Anxiety Inventory –0.009 (0.011) [–0.031 to
0.012]

–0.891 .37 0.867

Craving score via visual analog scale–
opioids

0.107 (0.045) [0.019-0.195] 2.383 .02 1.384

Subjective Opioid Withdrawal Scale –0.015 (0.016) [–0.047 to
0.016]

–0.949 .34 0.853

Nonadherence, % 1.619 (0.732) [0.179-3.058] 2.210 .03 1.362

Recent opioid use 1.025 (0.239) [0.556-1.493] 4.294 <.001 2.786

b

c

c

a



Results of time-lagged linear mixed-effects logistic regressions, including random intercepts for participants and sessions and
the listed variables as fixed effects.

Unstandardized odds ratios can be computed from the regression coefficient B as Exp(B). Standardized values provided are

from the same model with z-scored continuous variables.
The number of observations reflects the total number of task sessions available for analysis (552) minus 22 sessions that were

censored because of unknown prospective opioid use status (decision-making task parameters model) and an additional 52
sessions with missing data on any of the clinical variables listed (combined model; eFigure 3 in the Supplement).
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