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Craving is thought to be a specific desire state that biases choice
toward the desired object, be it chocolate or drugs. A vast major-
ity of people report having experienced craving of some kind. In
its pathological form craving contributes to health outcomes in
addiction and obesity. Yet despite its ubiquity and clinical rele-
vance we still lack a basic neurocomputational understanding of
craving. Here, using an instantaneous measure of subjective val-
uation and selective cue exposure, we identify a behavioral sig-
nature of a food craving-like state and advance a computational
framework for understanding how this state might transform val-
uation to bias choice. We find desire induced by exposure to a spe-
cific high-calorie, high-fat/sugar snack good is expressed in sub-
jects’ momentary willingness to pay for this good. This effect is
selective but not exclusive to the exposed good; rather, we find
it generalizes to nonexposed goods in proportion to their subjec-
tive attribute similarity to the exposed ones. A second manipula-
tion of reward size (number of snack units available for purchase)
further suggested that a multiplicative gain mechanism supports
the transformation of valuation during laboratory craving. These
findings help explain how real-world food craving can result in
behaviors inconsistent with preferences expressed in the absence
of craving and open a path for the computational modeling of
craving-like phenomena using a simple and repeatable experi-
mental tool for assessing subjective states in economic terms.
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There is growing interest across marketing, psychology, eco-
nomics, and medicine in understanding how subjective and

physiological states bias behavior. One such phenomenon that
has received much attention is craving. Defined as a strong desire
for a particular substance, craving is widely recognized as impor-
tant for the maintenance and treatment of addiction (1) and is
beginning to gain importance in our understanding of eating dis-
orders and obesity as well (2). Craving leads to a type of myopia
for the craved substance that can result in its consumption even
after long abstinence periods or overt efforts to avoid it.

While the clinical significance of craving cannot be under-
stated, craving is a dimensional construct and in its nonpatholog-
ical form, food craving in particular, is extremely common (3). A
vast majority of people (>90%) report having experienced crav-
ing of some kind (4, 5), suggesting this subjective state might
operate on general processes that shape and maintain individ-
ual preferences. Craving might reflect a specific, temporally lim-
ited change in an individual’s internal valuation process, a change
in how individuals experience the subjective value of the object
of their craving. There is compelling evidence in support of this
hypothesis. From data on real-world behavior, we know, often
against competing goals, people who experience craving (or psy-
chological desires consistent with what one might call craving)
are more likely to spend (6) or eat (7, 8) more than intended
and fall off their diet (9, 10). From passive cue reactivity stud-
ies (11–13), we know canonical valuation regions are robustly
engaged during food craving. Most notably, from behavioral eco-
nomic studies, we know that the subjective values of high-calorie,
high-fat foods increase following exposure to these foods (14),
with similar findings observed in smokers and problem drinkers
with cue-exposure–induced drug craving (15–18). A related line

of work focused on attention, a known subcomponent process
of craving (19, 20), finds that manipulations with shared features
to these cue-exposure manipulations, such as extended viewing
time (21) or increased physical salience of choice options (22),
also reliably lead to enhanced valuation of the attended options.

Despite evidence that craving as well as its subcomponent pro-
cesses (e.g., attention) and subjective valuation are intertwined,
many unanswered questions remain. First, the number of con-
trolled studies examining the effect of food cue exposure on eco-
nomic behavior is small, and these studies typically operational-
ize craving broadly, often as desire for a diverse set of foods.
This makes it difficult to distinguish specific cravings from more
general states like hunger and thirst. By definition, unlike these
“need” states, craving is thought to represent a very specific
desire experienced as a self-limited state that can emerge and
dissipate spontaneously, upon exposure to a tempting stimulus
or through more cognitive mechanisms (e.g., memory, cognitive
control). Thus, separating craving from hunger is necessary to
address questions regarding one of craving’s most distinguishing
features: its presumed selectivity for the object of craving.

A second consideration for the study of any transient subjec-
tive phenomenon including craving deals with how best to cap-
ture its momentariness. In traditional experimental economic
approaches to quantifying valuation, incentives are somewhat
delayed, as they are typically realized at the end of an experi-
mental session (if at all). This imposed delay can have conse-
quences for valuation such as susceptibility to temporal discount-
ing. Repeated, nonconsequential subjective desire ratings have
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been used as a means to address this issue but these do not
allow for an explicit quantification of value in a way that ensures
these judgments are minimally influenced by a desire to be self-
consistent or by experimenter demand effects.

Finally, although craving (and cue exposure more generally) is
thought to act on valuation processes, virtually nothing is known
about how this happens. We can speculate about three simple
algorithmic processes that can tell us about what happens at
the level of valuation systems. These are addition, multiplica-
tion, and exponentiation, and their distinction in other fields has
proved important, e.g., for understanding the neurobiology of
reinforcement learning (23) and efficient sensory coding (24, 25).
In our case, addition could suggest craving is a separable sig-
nal independent of the underlying input–output value function
for the desired object. The two nonadditive cases could instead
suggest craving scales this function, linearly (gain control-like
scaling) or nonlinearly (a fundamental change in value coding),
respectively. Isolating the specific algorithmic process of crav-
ing is an important step toward narrowing the explanatory gap
between basic neuroscience work on craving and work on the
psychological construct of craving.

Using a selective, multisensory, food-exposure manipulation
and a variant of the Becker–DeGroot–Marschak (BDM) auc-
tion procedure (26) designed to elicit true momentary valuations,
here we answer three related questions about craving, which we
defined in our laboratory model as a transient exposure-induced
increase in psychological desire for the exposed food. These are
the following: (i) Is there an increase in subjective valuation due
to changes in desire for specific foods? (ii) Is this increase selec-
tive for the exposed food, and, if so, what does this selectivity
depend on? And (iii) what is the algorithmic process at play? We
find exposure transiently increases subjective valuation, but this
increase is proportional to a given option’s subjective attribute
similarity to the exposed food. Furthermore, the change in val-
uation during peak effects is best captured by multiplication—a
linear good-selective scaling of the underlying value function.

Results
Study 1. Four-hour fasted nondieters (n = 44) indicated their
momentary subjective value in the form of a monetary bid, as
well as concurrent desire, for 15 snack foods spanning three cat-
egories (sweet, savory, drinks; Fig. 1A). In each bid trial, sub-
jects indicated the maximum they would pay out of a $5 endow-
ment in the current moment for the good offered on that trial.
In each desire trial, subjects indicated their current desire for the
good offered. The latter served as scaffolding for the psycholog-
ical process of bidding and a manipulation check for cue expo-
sure. Bid trials were interleaved with desire trials and clustered in
blocks. The task could end with 2% probability after each block
at which point a single bid trial from the last completed block was
realized. Thus, subjects knew that their bids “now” could deter-
mine which if any snack they could have now. After two blocks
(baseline), and before resuming the task for up to 20 additional
blocks (postexposure), subjects underwent a brief multisensory
cue exposure previously shown to induce food craving (14, 27–
30) (Fig. 1B and Materials and Methods). Subjects were randomly
assigned to undergo exposure for Snickers (a nut and chocolate
candy bar, n = 16), Cheetos (cheese corn puffs, n = 14), or Coke
(a soft drink, n = 14). These goods were chosen based on their
temptation level (high-calorie, high-fat/sugar content) and rela-
tionship to risk for overeating, as their baseline value correlated
with increased subject body mass index (BMI) (Fig. S2 and SI
Materials and Methods). These features resulted in a subjective
experience that, compared with other active control exposures,
was most akin to a craving-like state. Further, exposure was tai-
lored to a particular good with a particular set of attributes to
allow us to test for the selectivity of postexposure changes in
valuation. The multiple postexposure blocks also allowed us to
examine any temporal modulation of these effects.
Postexposure desire. Postexposure desire for the exposed good
(in the first and all postblocks; SI Results) was higher relative to
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Fig. 1. Experimental procedures. (A) Timeline of the economic decision-
making task, exposure, and ratings procedures. (B) During the 3-min selec-
tive exposure, subjects were sensorially exposed to one snack good (randomly
assigned Snickers, Cheetos, or Coke) while recalling a memory of consuming
that particular good. (C) Example bid, desire, and similarity rating trials.

baseline, confirming the success of the manipulation at inducing
a craving-like desire state as in prior work (14, 27–30) and con-
sistent with our operationalization of this state.
Postexposure bids. Critically, the induced desire state was reflected
in subjective valuation. We focus first on the two postexposure
blocks because we expected effects to be dynamic and to peak
immediately. Repeated-measures ANOVA with time (baseline,
immediately postexposure) as within-subjects factor and expo-
sure group (Snickers, Cheetos, and Coke) as between-subjects fac-
tor revealed a main effect of time [F(1,41) = 29.64, P = 3.0 ×
10−6, ηp

2 = 0.42; Fig. 2A], no effect of exposure group (P = 0.68),
and no exposure group × time interaction (P = 0.64). Thus,
exposure-induced bid increases did not depend on the identity of
the exposed good, consistent with our selection of these goods as
all highly tempting. We therefore combined the groups for all fur-
ther analyses. In the combined group, subject bids increased by
$0.66 (or 38%), indicating a substantial willingness to overpay for
the exposed goods postexposure relative to before exposure.

We also explored if there were changes not only in absolute
value but also in relative value, a rank-order change indicative
of preference reversals. Such reversals were indeed observed:
Whereas the exposed goods assumed all possible rank-order posi-
tions between the least and most valuable based on bid amount
among all goods at baseline (median position: 8 of 15), postexpo-
sure, these same items were now part of the top one-third most
preferred goods in the choice set (median position: 4 of 15, Z =
4.52, P = 6.13 × 10−6, Wilcoxon signed-rank test; Fig. 2B).
Selectivity. In addition to preference reversals, the rank-order
data show exposure did not increase subjective valuation glob-
ally. To quantify the degree of selectivity, or alternatively gener-
alization, of the induced state, we examined postexposure bids
for nonexposed goods. For this analysis, we used posttask simi-
larity ratings: individual subject estimates of the degree of sub-
jective similarity between good pairs (Fig. 1C and SI Materials
and Methods). While the broad snack categories were a strong
predictor of these similarity judgments, subject-specific, cross-
category attributes such as tastiness and healthiness explained
additional variance, suggesting these judgments contained addi-
tional idiosyncratic information about the relational structure
of the choice set (Fig. S3). As shown for an example subject
(Fig. 3A), these similarity judgments predicted the degree of bid
change postexposure for the full choice set. Postexposure bids
increased for nonexposed goods rated as subjectively similar for
this subject to the exposed good (in this case, Coke). In con-
trast, bids were unchanged or below-baseline levels for dissim-
ilar goods. We examined the similarity effect for the group in a
linear mixed model (LMM) where we expressed the change in
subject bids postexposure as a function of the degree of simi-
larity of each good i to the exposed good for a given subject j,
assuming a random intercept (b0 j) and random slope (b1 j) vary-
ing by subject: ∆bid ij =β0 +β1sim ij + b0j + b1j sim ij + εij . The
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Fig. 2. Effect of selective exposure on subjective valuation. (A) Average
bids, by group, for the exposed good at the two baseline blocks and at
the two postexposure blocks. (B) Median rank, based on bid amount, of the
exposed good (the three groups combined) relative to all other goods at the
same time points (baseline and postexposure), showing preference reversals
following exposure. Individual subject data are shown in gray. Values are
means ± SE. *P < 0.05, **P < 0.01.

fixed effect was significant [unstandardized β1 = 0.44 (SE =
0.096), standardized β∗1 = 0.26, t(658) = 4.55, P = 6.26 ×
10−6; Fig. 3B and Table S1], indicating similarity had a small to
medium-sized effect on postexposure bids across the group. In a
follow-up exploratory/control analysis (Table S1), we confirmed
these results remained after excluding the exposed good from
the analysis (P = 0.039)—an arguably more powerful demonstra-
tion of this effect. Specifically, bids increased significantly post-
exposure for the single most (89.5 ± 15.5%) similar nonexposed
good (+$0.26, P = 0.015), but not for the single least (6.7 ±
11.3%) similar nonexposed good (+$0.03, P = 0.61). See Fig.
S4 and Table S2 for snack identities ordered by similarity. Taken
together, these data indicate a degree of exposure-induced gen-
eralization in valuation that depends on similarity.
Temporal dynamics. The above findings demonstrate an imme-
diate effect of cue exposure, but induced laboratory craving is
expected to dissipate within minutes or hours (29, 31). We there-
fore examined how bids for the exposed good evolved over post-
exposure block number i for a given subject j as follows: ∆ bidij =
β0 + β1blockij + b0 j + b1 jblockij + εij. The linear block fixed
effect was negative and significant [β1 = −0.013 (SE = 0.006),
β∗1 = −0.074, t(792) = −2.27, P = 0.02; Fig. 3C and Table S1],
showing the expected decline in bids with time. Considering time
in minutes yielded similar results (P = 0.03, Table S1). These
rates predict a full return to baseline in≈48 blocks or≈117 min,
such that we captured just under half of the total predicted time
course of the exposure effect in valuation (41.7% drop). Further
exploratory/control analyses showed alternative (e.g., exponen-
tial decay) models did not provide a better fit (SI Results).

These data show the induced subjective state, while fairly long
lasting, is dynamic and support an effect along a similarity gra-
dient. In a follow-up analysis, we explored how these features
relate. If a single latent process drives dynamic changes in val-
uation for the exposed good and nonexposed goods as a func-
tion of similarity between the two, then we expect stronger time-
course correlations between subjects’ bids for the more similar
than for the less similar nonexposed goods and their bids for the
exposed good. To test this prediction, we first correlated subjects’
bids for each good (g) with those for the exposed good (∆ bid in
the full postexposure window; see Fig. 3D for an example) and
asked whether the correlation strengths (Ri coefficients) were
ordered by similarity for a given subject j as follows: R (good g
vs. exposed)ij = β0 + β1simij + b0 j + εij. As with overall bidding
behavior, the fixed effect was significant [β1 = 0.17 (SE = 0.04),
β∗1 = 0.14, t(593) = 3.84, P = 0.0001; Fig. 3E and Table S1],
with a higher degree of similarity predicting stronger temporal
coupling between a given nonexposed good’s postexposure value
and that of the exposed good. This supports the idea that a sin-
gle underlying process dynamically drives both the similarity and
temporal effects in valuation.

Study 2. So far, we find specific desires affect subjective valua-
tion, but we do not yet know how. Borrowing from methods in

computational neuroscience (23, 24), in study 2 we tested three
possible algorithmic processes that could explain the change in
subjects’ internal value representation: addition, multiplication,
and exponentiation (Fig. 4A). An independent sample of 45 sub-
jects completed the same procedures but now had the opportu-
nity to bid for 1 unit, 2 units, 3 units, 5 units, or 8 units of the
exposed good (n = 24 Snickers, n = 21 Cheetos) as well as two
other goods (Snickers or Cheetos, depending on which one was
not assigned for exposure, and nut and chocolate trail mix; Fig.
S5 and Materials and Methods).
Postexposure desire. Postexposure desire for the exposed good
(in the first and all postblocks; SI Results) was higher relative to
baseline, again confirming the success of the manipulation.
Postexposure bids. First, to directly compare results across stud-
ies, we analyzed bids for quantity = 1, the only quantity offered
in study 1. A repeated-measures ANOVA with time (baseline,
immediately postexposure) and exposure group (Snickers, Chee-
tos) as factors revealed a main effect of time [F(1,43) = 13.65,
P = 6.19 × 10−4, ηp

2 = 0.24], no effect of exposure group
(P = 0.35), and no exposure group × time interaction (P =
0.11), replicating results of study 1. Significant main effects of
time (all P < 0.015, ηp

2 > 0.13) and nonsignificant effects of
exposure group and its interaction with time (all P > 0.33)
were also observed for each of the other quantities separately
(2, 3, 5, 8).
Algorithmic process. Importantly, our design in study 2 allowed
us to, for each subject, good, and moment, construct a function
mapping objective (quantity offered) to subjective value (the rel-
ative increase in bid with quantity), which for simplicity we refer
to as a “utility function.” Our primary analysis tested for differ-
ences in this function consistent with addition, multiplication, or
exponentiation at the two postexposure blocks (where the expo-
sure effect peaked in study 1) relative to baseline.
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for nonexposed but similar goods, consistent with multiplication. Values are
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We first examined the form of exposure-induced change, using
a “model-free” approach without assumptions about the shape
of subjects’ utility functions. For each subject and each quantity
of the exposed good, we subtracted baseline bids from postex-
posure bids (Fig. S6 and Table S1). We then tested in a LMM
whether the differences fell on a horizontal line (slope = 0,
indicating an equal-magnitude increase in value irrespective of
quantity consistent with addition) or on a monotonically increas-
ing/decreasing line (with slope 6= 0 consistent with a nonadditive
process). We observed some evidence for the latter, a monotonic
increase, such that bids tended to increase more for the higher
quantities of the exposed good. These data suggest that exposure
does not transform valuation via a purely additive process.

Next, we performed a more detailed “model-based” analysis of
the shape of the utility function for the exposed good in an effort
to arbitrate between the two nonadditive possibilities: multiplica-
tion vs. exponentiation. We fitted a power function to individual
subject bid data using nonlinear least-squares regression: bidi =
B0 + ω quantityi

α + εi, where ω and α represent a weight (gain)
term and the curvature of this function, respectively. We fitted
separate models to the postexposure and baseline bid data (four
parameters in total), with the simplifying assumption that the
intercept (B0) was the same at the two time points (here set
to 0, although other values produced similar results). We then
tested for group-level changes in each of the two parameters
after natural-log transformation (to approximate normal distri-
butions). A shift in ω would indicate multiplicative (linear) scal-
ing, whereas a shift in α would indicate exponential (nonlinear)
scaling. We found evidence only for a shift in ω, with ω increas-
ing postexposure relative to baseline [t(44) = 2.95, P = 0.005, d =
0.44; Fig. 4B]. In contrast, and consistent with theory and prior
work, both functions were concave (α < 1), showing similar rates
of diminishing marginal value/utility with increasing reward size
at baseline and postexposure [t(44) = −0.88, P = 0.38, d = 0.13].
Selectivity. Following the results of study 1, we tested for any
spillover by similarity in ω and α in repeated-measures ANOVAs
with time and good type (exposed, more similar, less similar)
as within-subjects factors. A similarity effect was supported by a
good × time interaction for ω [F(2,88) = 5.57, P = 0.005, ηp

2 =
0.11]. There was also a time main effect [F(1,44) = 5.71, P =
0.02, ηp

2 = 0.12] but no good type effect (P = 0.07). As with the
exposed good, ω increased for the more similar [t(44) = 2.22, P =

0.03, d = 0.33], but not for the less similar [t(44) = −0.52, P =
0.61, d = 0.08], of the two nonexposed goods (Fig. 4B). See Table
S3 for good identities ordered by similarity. No significant main
or interaction effects were observed for α (F < 2.93, P > 0.09,
ηp

2 < 0.06). Altogether, these data suggest the exposure-induced
state transforms valuation nonadditively and the specific form
of this transformation is multiplicative—a linear scaling of the
underlying value function that depends on similarity.

Discussion
In a laboratory model of food craving as a model for craving
more generally, we found that selective exposure increased psy-
chological desire for the exposed good and, importantly, its sub-
jective value, consistent with prior work on specific drug cravings
(15–18) and craving for a range of high-calorie, high-fat foods
(14). Additionally, owing to the use of a constant probability
that signaled limited opportunities to purchase the desired snack
options (a fixed hazard function in time) and a fairly broad menu,
we were able to show the change in valuation was transient, and it
generalized on a subjective similarity dimension to other nonex-
posed goods. Probing the underlying algorithmic process, we fur-
ther found multiplicative scaling best accounted for the change
in subjective valuation. This craving-like state is, this suggests, a
positive and good-selective linear reweighing of an individual’s
internal value representation. These findings could help explain
how craving can result in behaviors inconsistent with expressed
preferences in the absence of craving and open a path for the
computational modeling of craving.

Importantly, the exposure-induced changes in valuation were
indicative of preference reversals. The exposed options overtook
options ranked higher preexposure, which at an economic level
suggests craving-like desire can be viewed as a context-dependent
change in preference order and understood with existing models
of choice. From a health behaviors perspective, preference rever-
sals of this kind imply that even if people strive to eat healthier or
endorse drug-free lifestyles, craving could overshadow the value
of health by boosting the value of unhealthy foods or drugs, in line
with previous suggestions (6, 7, 9, 10, 32), although see ref. 33.
This was manifest even in our nondieter sample. The “healthier”
options were rated as subjectively dissimilar to the high-calorie,
high-fat/sugar content exposure snacks (Table S2) and were
those that exhibited unchanged, and in some instances below-
baseline, postexposure values (while the tempting options had
consistently higher postexposure values).

These preference order data underscore a second main find-
ing of our study: The selectivity of the exposure effect depended
on the subjective similarity of a given option to the desired,
exposed options. This suggests desire for Snickers does not make
one hungrier; it makes one desire Snickers and to some degree
subjectively similar goods, such as its closest substitutes. This is
seemingly at odds with an alternative, and equally intuitive, per-
spective that predicts more similar goods should be less appeal-
ing once attention is focused on a target good, perhaps because
the discriminability between the two is enhanced. Our data heav-
ily weigh against this possibility. Other data supporting this possi-
bility have been observed (34), however, only when the most sim-
ilar available good is of lower value than the target/exposed good
(e.g., generic or store brand version). In our study, the exposed
and most similar goods had comparable values.

The similarity effect also argues against the possibility that our
results are driven by experimenter demand or mere exposure.
Although subjects were not exposed to the most similar goods,
their value increased. In directly comparing our manipulation to
two control manipulations with similar experimenter demands
(SI Materials and Methods), (i) a physically identical exposure for
a less tempting food and (ii) a picture-viewing–only exposure, we
found that, in fact, exposure alone is not sufficient to induce the
specific changes in desire or valuation that we observed. These
changes instead depended on the subjective experience of the
exposure—how positively intense it was for the subject. This
is consistent with prior work showing that exposure effects on

Konova et al. PNAS | April 17, 2018 | vol. 115 | no. 16 | 4125

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1714443115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1714443115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1714443115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1714443115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1714443115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1714443115/-/DCSupplemental


willingness to pay and choice depend on the physical salience of
the exposed stimulus (22) and its valence (21), with attention to
appetitive vs. aversive goods leading to opposite choice biases.
Although in these prior studies subjective experience was not
assessed, these studies together with our data support a more
active account of exposure effects in value-based choice whereby
changes in subjective valuation depend on how positively evoca-
tive a stimulus is for the subject, rather than a more passive effect
whereby exposure directly primes approach behavior.

While the neurobiological mechanism supporting the similar-
ity effect is unknown, one possibility, assuming values for sim-
ilar goods are represented in physically adjacent brain regions,
as some studies have shown (35), is that exposure enhances the
value of the exposed, desired good and collaterally the value of
goods represented nearby in cortical space, in a manner reminis-
cent of spatial attention’s distribution in visual cortex. Of course
value can be encoded on a more abstract representational dimen-
sion and exposure could act indirectly on these representations,
for example, by triggering memories for related goods (36) or by
enhancing the weight of a particular attribute (or set of attributes)
common to the desired and similar goods—a type of reshaping
of a subject’s attentional priority map. From a basic science per-
spective, these data suggest we could take advantage of selective
cue exposure as a tool to better understand the organization of
value representation in the brain. For example, like devaluation,
which dampens identity-specific values (37), such manipulations
could be used instead to show selective hypervaluation.

A central aim of computational approaches to psychiatry is
obtaining a theoretical, mechanistic, understanding of psycho-
logical phenomena (38). Here we aimed to identify the algorith-
mic process by which laboratory craving is expressed in valua-
tion. Identifying this process is important because the behavioral
motifs associated with specific algorithmic computations can
have different neurobiological implementations (39). We com-
pared three such possible algorithmic processes, addition, mul-
tiplication, and exponentiation, and found multiplicative scaling
of subjective valuation best captured the algorithmic process of
laboratory craving. Multiplication is one of the most common
algorithmic computations throughout neural systems (25) and is
observed in valuation systems as well (40). Given that the val-
uation system, composed of the ventromedial prefrontal cortex
and the striatum (41), is a candidate neurobiological substrate of
craving (11–13) and animal (42, 43) and in vivo human imaging
(44, 45) work linking dopamine in this system to behavior and/or
subjective experience consistent with craving, we speculate that
craving is a gain control-like scaling of valuation signals that
might involve dopamine, although as noted this is highly spec-
ulative. Nevertheless the particular bidding procedure we used
is implemented in the brain’s valuation system (46); as such, we
expect to be able to directly measure changes in this system that
reflect changes in subjective valuation and that will allow us to
test this hypothesis. This is also an important next step in link-
ing our findings to real-world behavior as some studies have sug-
gested that neural measures might be more predictive of these
behaviors than corresponding behavioral or self-report labora-
tory measures, particularly at longer timescales (47).

In addition to providing testable predictions for future neuro-
biological work, multiplication can also help explain a number
of observations. For example, because of the nature of multiplica-
tive scaling, exposure-induced changes in valuation should be
larger for things generally of higher value (e.g., those high in tasti-
ness and/or low in healthiness). Consistent with this, the most fre-
quently craved foods in the general population are rich in sugar
and fat (4, 5). Also because of the nature of multiplicative scaling,
when we desire something, we should want more of it. This could
translate into seeking increasing amounts of a desired good, which
might explain why people plan to (27) and eventually do (48) con-
sume more of a desired food in laboratory studies and certain
eating escalation behaviors in real-world environments (7).

Some methodological considerations and potential avenues
for future research are worth noting. First, although we used a

nondieter community sample to ensure a distribution of expo-
sure effects for food, it remains an open question whether the
phenotype we observed in our laboratory model of craving is the
same in dieters and in individuals who experience pathological
levels of craving. Future studies should examine how generaliz-
able our findings are to the full range of craving intensity. Future
work should also test the boundary conditions of the time course
of this subjective state and the mechanisms underlying its dynam-
ics in valuation. In our estimation, effects should fully dissipate in
2 h. But this is in the context of repeated exposure to the opportu-
nity to obtain the desired good. When this good is not available,
or when a person engages in self-regulation, this time course may
be shorter. Additional (e.g., memory decay) processes could also
play a role and require further investigation.

In summary, we find exposure increases subjective valua-
tion in a selective, but not exclusive, manner. These changes
appear to respect underlying relationships among choice options
(e.g., based on similarity) and established individual preferences.
Our data also shed light on the underlying algorithmic process,
showing the induced subjective state operates through a multi-
plicative/gain-control like mechanism, the neural implementa-
tion of which is an important target for future research.

Materials and Methods
Subjects. Forty-four adults (34 female, ages 18–55 y [24.9 (SD = 7.7)]) partic-
ipated in study 1 and 45 adults (27 female, ages 18–59 y [24.1 (SD = 8.7)])
participated in study 2 after giving informed consent. New York University’s
Committee on Activities Involving Human Subjects approved all procedures.

Because dietary goals affect how food cues influence consumption behav-
iors (3), we only recruited nondieters. Subjects were invited to participate if
they rated their current dietary goals in the contemplative or below range
on a diet questionnaire, were not diabetic, and did not report any relevant
food allergies or restrictions. Because of the restricted choice set in study 2
(see below), additional exclusion criteria for this study included a prestudy
desirability rating for Snickers and Cheetos≥3 (out of 10). These ratings were
completed as part of prescreening before scheduling subjects for their session.
A total of 12 subjects who completed study procedures were excluded from
all analyses because they (i) did not understand or did not comply with the
study instructions (n = 4 from study 1, n = 5 from study 2) or (ii) reported post
hoc dietary or medical restrictions not disclosed at the time of screening that
would have made them ineligible for the study (n = 3 from study 2). In addi-
tion, the task ended before the exposure manipulation for n = 1 subject from
study 2. Data from the remaining 89 subjects are reported.

Procedure. All sessions began between 11:00 AM and 12:30 PM or 4:00 PM
and 5:30 PM and lasted ≈2 h. To increase motivation for the snack foods
offered, subjects had to refrain from eating or drinking anything for 4 h
(Fig. S1). Payment was $20/h plus a bonus. The bonus consisted of additional
money, a snack, or both depending on individual bidding behavior. Subjects
were extensively trained on the bidding procedure, including completion of
practice trials and a comprehension quiz with the experimenter. The experi-
menter then left the room and subjects were alone for the remainder of the
time and received all further instructions via the computer screen.

Economic Decision-Making Task. See SI Materials and Methods for a detailed
description of the task development. The task included 15 snack foods and a
maximum of 22 blocks (2 baseline + 20 postexposure blocks). Each block con-
sisted of 30 trials (1 bid and 1 desire rating trial for each of the 15 goods). On
each trial subjects saw a high-resolution color image depicting a good and
below it a mouse-controlled slider bar used to register their bid (from $0 to
$5 in $0.01 increments) or desire rating [from 0 to 8 in 0.016 arbitrary unit
increments (same spacing as the bid bar)] for that good. The bid and desire
rating trials were randomly interspersed except for in the first postexposure
block, which always began with a desire rating for the exposed good. The
task was self-paced, but most subjects took ≈3 min/block. After each block,
an animated scrambler appeared on the screen for 10 s, signaling the possi-
bility of the task ending in that moment (which was kept at 2%). When the
task ended, only bids from the last completed block were eligible for realiza-
tion (see SI Materials and Methods for details). Subjects were explicitly told
this should help them think in the current moment, and pilot data showed
this feature of the task helped minimize discounting/forecasting behavior.
Data loss due to the 2% hazard rate was minimal (all subjects completed at
least 2 postexposure blocks, and 84% completed all 22 blocks).
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Exposure Manipulation. See SI Materials and Methods for a detailed descrip-
tion of the exposure manipulation and other control manipulations. After
the second task block, the computer program was interrupted with written
instructions to find and open a covered tray. The tray contained a Snickers
bar, bag of Cheetos, or can of Coke (randomly assigned). Adapted from prior
work (14, 27–30), the multisensory exposure included instructions to exam-
ine the item in the tray by opening or unwrapping it, breaking off a piece
or pouring it into a cup, and smelling it. Subjects were instructed to imagine
the taste and texture without actually tasting it, rather by recalling a mem-
ory of consuming this item last. To facilitate compliance with instructions
and the maintenance of a continuous representation of the exposed good
after the exposure, subjects were told they would later have to answer ques-
tions about the “activity.” After 3 min had elapsed, subjects were instructed
to place the item back in the tray, cover it, and resume the task.

Posttask Ratings. Immediately after bid realization, subjects were asked
for a brief description of the memory called to mind during the exposure
manipulation, how good or bad they felt, and the intensity of that feeling.
They then completed a series of similarity and subjective attribute ratings
(Fig. 1C and SI Materials and Methods).

Study 2. Procedures largely paralleled those of study 1 (Fig. S5). The changes
implemented were aimed at testing the algorithmic process of the exposure
effect in valuation. Instead of a single vending-machine–sized Snickers bar
or a 3.5-oz bag of Cheetos, here we used instead fun-sized Snickers bars and

1-oz Cheetos bags offered in units of 1, 2, 3, 5, or 8. To simplify the choice
set and reduce the number of trials we omitted drinks. A third mixture cat-
egory snack (nut and chocolate trail mix, also offered in five quantities) was
available instead, for a total of 15 unique options (3 snack goods × 5 quan-
tities of each). Additional changes included (i) subject assignment to one
of two exposure groups (Snickers or Cheetos); (ii) because of the repetitive-
ness of the three-item task, a maximum of 12 task blocks (2 baseline + 10
postexposure blocks); and (iii) an endowment for bidding of $10.

Analysis. Data were analyzed in Matlab R2015b (MathWorks) using the
Statistics and Machine-Learning Toolbox and SPSS v.22 (IBM Corp.). Two
classes of LMMs were fitted: (i) a priori hypothesis-driven models, as de-
scribed in Results, and (ii) exploratory/control models (Table S1). Unless oth-
erwise noted, all models included fixed-effect intercept and slopes and ran-
dom intercept and slopes varying by subject and were fitted using fitglme in
Matlab, assuming Gaussian distributions. Repeated-measures ANOVAs and t
tests were used to examine the exposure main effect (both studies) and dif-
ferences in the individually estimated parameters ω and α (study 2). Results
were considered significant at P < 0.05, two tailed.
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