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Divisive normalization is a canonical computation in the brain, observed across neural
systems, that is often considered to be an implementation of the efficient coding
principle. We provide a theoretical result that makes the conditions under which divisive
normalization is an efficient code analytically precise: We show that, in a low-noise
regime, encoding an n-dimensional stimulus via divisive normalization is efficient if
and only if its prevalence in the environment is described by a multivariate Pareto
distribution. We generalize this multivariate analog of histogram equalization to allow
for arbitrary metabolic costs of the representation, and show how different assumptions
on costs are associated with different shapes of the distributions that divisive normal-
ization efficiently encodes. Our result suggests that divisive normalization may have
evolved to efficiently represent stimuli with Pareto distributions. We demonstrate that
this efficiently encoded distribution is consistent with stylized features of naturalistic
stimulus distributions such as their characteristic conditional variance dependence, and
we provide empirical evidence suggesting that it may capture the statistics of filter
responses to naturalistic images. Our theoretical finding also yields empirically testable
predictions across sensory domains on how the divisive normalization parameters should
be tuned to features of the input distribution.

divisive normalization | efficient coding | natural stimulus statistics | histogram equalization |
Pareto distribution

The brain has to make efficient use of its limited resources to represent and respond to the
wide range of stimuli in its environment. An important mechanism by which this can be
achieved is divisive normalization (1, 2), which is thought to be a canonical computation in
the brain (3). This gain control mechanism (according to which the response of a neuron
to its preferred stimulus is suppressed by the intensity of nonpreferred stimuli) permits
the representation of potentially unbounded stimuli by biophysically feasible bounded
firing rates. Originally proposed for individual neurons in the primary visual cortex (1, 4,
5), this computation has since also been observed at the population level in the primary
visual cortex (6–8) and throughout the visual hierarchy (9, 10), as well as in several other
neural systems including olfactory pathways (11), the middle temporal area (12, 13), the
inferotemporal cortex (14), the hippocampus (15), and in multisensory integration (16).
In addition, divisive normalization has been shown to play an important role in value
representations (17, 18) and for choice behavior, where it has been proposed to account
for violations of the independence of irrelevant alternatives (IIA) axiom of rational choice
(19–23; but see refs. 24 and 25). The nonlinear computation has also been suggested to
play a role in attentional modulation (12, 26, 27), the modulation of response variability
(28), the representation of visual uncertainty (29), and probabilistic inference (30, 31).
It is further used in neural network models of the visual system (32, 33) as well as in
computer vision and image compression (34).

This ubiquitous array of functions begs the question of what overarching objective the
divisive normalization computation achieves. In this paper, we consider this computation’s
information-theoretic properties and provide testable conditions for its efficiency that are
both simple and general, making them applicable across many of the aforementioned
settings.

Since Schwartz and Simoncelli (35) showed empirically that divisive normalization
reduces the statistical redundancy present in natural images, a common answer (36) has
been that divisive normalization is an implementation of the efficient coding principle
(37–41). This principle has been central to our understanding of the visual and other
sensory systems (42–44), and it has also provided an account of biases in perception
(45) and choice (46–49). Of course, divisive normalization has benefits beyond coding
efficiency and redundancy reduction, such as permitting tuning curves that are invariant
with respect to “nuisance” dimensions (e.g., maintaining discriminability of orientations
regardless of contrast) or ensuring that population responses are easily decodable (e.g., by
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a linear classifier or winner-take-all competition), among other
features (3). Its widespread implementation in the nervous system
may thus simultaneously achieve a number of purposes. Here,
we focus on the question of whether divisive normalization is
indeed an efficient computation, which arises naturally in both
the sensory and choice domains.

Despite significant progress (50), an answer to this question in
terms of testable conditions for efficiency has remained elusive,
since formally relating neural computations to stimulus distribu-
tions has proved difficult: “The establishment of a precise quan-
titative relationship between environmental statistics and neural
processing is important . . . [but] it has been surprisingly difficult
to make the link quantitatively precise . . . [and] specification of
a probability distribution over the space of input signals . . . is a
difficult problem in its own right” (ref. 51, p. 1194). We close this
gap with a theoretical result that makes precise the conditions on
the input distribution under which divisive normalization encodes
a stimulus efficiently.

Existing analytical work in the domain of vision has
demonstrated that divisive normalization approximately (but
not entirely) removes the statistical dependence in models of
filter responses to natural images (52–54) such as the conditional
normal (35) or lognormal (55) distributions. Moreover, divisive
normalization can be viewed as an approximation of the nonlinear
radial Gaussianization transformation that removes the statistical
dependence of non-Gaussian elliptically symmetric distributions
(56), yet divisive normalization itself can do so only imperfectly
owing to its bounded range (57, 58). Lyu (50, 59) has quantified
the extent to which divisive normalization reduces the statistical
dependence of one such elliptical distribution: the multivariate
Student’s t distribution, which is in the class of Gaussian scale
mixture models of natural images (60). He showed that even
though divisive normalization approximates the transformation
that eliminates this model’s statistical dependencies, it can also
increase them in low-dimensional settings.

This literature typically assumes a model of empirical stimulus
statistics and derives the predictions of an (approximately) optimal
code. It thus represents the first of two common approaches for
testing the efficient coding hypothesis (51). The second approach
is to examine the statistics of actual neural responses to naturalistic
stimuli, in the spirit of Laughlin (40). Here, we pursue instead a
third approach that consists of deriving analytically what stimulus
distribution a given computation efficiently represents. This is in
contrast to Malo and Laparra (54) or Lyu (50), for example, who
use similar techniques but who start by assuming a given model
of stimulus statistics. Instead, our approach is similar in spirit to
that of Ballé et al. (61), who obtain a density model on images by
inverting a generalized divisive normalization transform, except
that we obtain the input density in analytical closed form. With-
out making any a priori assumptions about the stimulus statistics,
the input distribution we find to be efficiently encoded captures
many important features of naturalistic stimulus statistics, as we
demonstrate in an analysis of image statistics. Our approach thus
provides an additional perspective on the efficiency properties of
divisive normalization.

We consider a setting in which an n-dimensional input is to
be encoded by the divisively normalized firing rates of n neurons.
The input can be either a stimulus or a representation of a stimulus
coming from another neural system upstream. In the context of
visual stimuli, the multivariate input could arise, for instance, as
the responses of a population of linear filters convolved with the
stimulus (35). At least two conditions have to be satisfied for the
resulting multivariate representation to be efficient in a low-noise
regime. First, it ought to adhere to histogram equalization (40)

along each input dimension, which ensures that each output is
used equally often. Second, maximizing the Shannon entropy of
the output distribution requires—in the absence of constraints—
that any statistical dependence across dimensions be removed.
We use a formulation of the efficient coding principle that, in
a low-noise regime, implies both of these desiderata and thus
gives rise to a multivariate analog of the classic criterion of
histogram equalization. Specifically, we consider a neural code
to be efficient if and only if it maximizes the Shannon mutual
information (62, 63) between the n-dimensional input and its
representation. Since, for sufficiently small noise, this criterion
can be approximated arbitrarily well by the requirement that the
output distribution is entropy-maximizing, divisive normalization
is then efficient whenever it transforms the input distribution
into an output distribution that is uniform over the range of
values divisive normalization can attain (39, 64).* This allows us
to characterize the class of input distributions that are efficiently
encoded in a low-noise regime.

We prove that divisive normalization maximizes the entropy of
the output distribution if and only if the distribution of inputs
in the environment is multivariate Pareto. This suggests that
divisive normalization may have evolved as an efficient encoding
strategy for heavy-tailed, scale-invariant power-law distributions
of the kind that occur in many ecological contexts (66); see also
Discussion.

The statistical dependence in the multivariate Pareto distribu-
tion is also consistent with the conditional variance dependence
observed in natural image statistics (35), and it has a represen-
tation as a Gamma mixture of independent exponential random
variables (providing a link to ref. 60). In an empirical analysis of
naturalistic images, we demonstrate that the efficiently encoded
Pareto distribution indeed captures the statistics of filter responses
to natural images just as well as a common model of natural image
statistics does. Divisive normalization may thus be an adaptation,
in evolution or development, to various natural contexts with
physical quantities whose distributions are characterized by heavy-
tailed marginals and an empirically important form of statistical
dependence.

We generalize our result by allowing for a representation to
come at an arbitrary metabolic cost, which affects the shape of
an efficient code (67, 68), and we show how this impacts the
optimally encoded input distribution. For example, if costs are
linear in the total number of spikes (which constrains the average
firing rate), then the entropy-maximizing output distribution is
exponential, and the associated input distribution changes ac-
cordingly. We provide necessary and sufficient conditions on the
stimulus distribution for divisive normalization to be efficient
under any member of a large family of cost functions.

Beyond providing a testable prediction on the shape of stim-
ulus distributions that divisive normalization efficiently encodes,
our theoretical result also yields empirically testable predictions
across sensory domains on how the parameters of the divisive
normalization transformation should be tuned to the parameters
of the stimulus distribution (35). Specifically, the power index
in the normalization function matches the shape parameter of
the stimulus distribution, while the normalization weights are the
inverses of the scale parameters of the stimulus distribution. Our
theoretical predictions thus open the door to systematic experi-
mental tests of the efficiency properties of empirically observed
divisive normalization.

*Our method extends to other formalizations of the efficient coding principle that relax
the small-noise assumption (65), since we provide an analytical formula relating any input
distribution to the distribution of its representation.
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Results

We consider a multivariate stimulus (or input from another
neural system) modeled as an n-dimensional random vector S =
(S1, . . . ,Sn) taking values s ∈ R

n , where, for all i , si > μi for
some μi ∈ R. The distribution of this stimulus is described by
a continuous probability density function (pdf ) fS . The support
of this density is semi-infinite, bounded below by the constant
μ ∈ R

n , so that shifting the stimulus s by μ gives rise to the
positive input x = s − μ. This input is encoded by a population
of n neurons whose (mean) firing rates are given by the divisive
normalization function (3)

ri(x ) = γ
xα
i

bα +
∑n

j=1 λj xα
j

, i = 1, . . . ,n, [1]

for x ≥ 0 and finite parameters γ > 0, α > 0, b > 0, and λj > 0.
The encoding r : Rn

+ → R
n
+ gives rise to an n-dimensional rep-

resentation. The parameter γ is often interpreted as the maximal
firing rate, the parameter b as a semisaturation constant, and λj

are normalization weights. One possible interpretation of α in the
context of vision neuroscience is that xα

i models the activation
resulting from a linear filter response that is then normalized.
While numerous functional forms have been proposed to describe
divisive normalization (59, 69), our formulation generalizes the
normalization equation in Carandini and Heeger (ref. 3, equa-
tion 10) to include different weights λj in the normalization pool.
For analytical tractability, we assume that these normalization
weights can differ across input dimensions but not across output
dimensions.

Constraints and Metabolic Costs. To assess the efficiency of the
divisive normalization transform, we have to specify the class of
permissible codes with which to compare it, as well as the effi-
ciency criterion. We start by defining the former. Specifically, we
compare divisive normalization with any encoding g : Rn →Δ
whose codomain is restricted to

Δ≡
{
y ∈ R

n
+ :

n∑
i=1

λiyi < γ

}
[2]

so that the output y = g(x ) resulting from any feasible input x
respects an upper bound γ on the λ-weighted sum of firing rates
y . In addition to this constraint, we allow for a metabolic cost of a
representation (70–72). We assume that a representation y ∈ R

n
+

comes at a cost c(y), where c is an arbitrary cost function that is
continuous and bounded on Δ.

The constraint is motivated by the fact that the range of
values attained by divisive normalization is bounded by a linear
constraint. The following proposition shows that Δ is exactly the
range of values the divisive normalization function (Eq. 1) attains:

Proposition 1. The divisive normalization function r is invertible
and its image is given by the simplex Δ.

The proof of Proposition 1 is based on an application of the matrix
determinant lemma (e.g., ref. 73, theorem 18.1.1); it is given in
SI Appendix along with all other proofs. Note that the bound
γ also implies an upper bound γ/λi on the firing rate of each
individual neuron, but not all neurons can simultaneously spike
at their maximal firing rate. We take this constraint, which may
arise from physiological limitations, as given and thus evaluate
the efficiency of divisive normalization relative to the class of
encodings that respect this same upper bound on the (weighted)
sum of (nonnegative) firing rates.

Note that a bounded codomain is not only empirically plausi-
ble, but also mathematically necessary for considering “lossy com-
pression,” since an unbounded range of firing rates amounts to
perfect coding capacity. Moreover, efficiency among all encodings
respecting the constraint Δ is a necessary condition for efficiency
among an even larger class of bounded representations with which
divisive normalization could potentially be compared, because
divisive normalization does adhere to the constraint Δ. Whether
neural codes with image Δ are efficient even among those with
more general representations is beyond the scope of this paper,
but an interesting question for future research. Imposing suitable
additional structure on the metabolic cost function, for example,
would likely result in such a constraint.

Efficiency Criterion. To state the conditions under which a neural
code is efficient, we employ a formalization of the efficient coding
hypothesis whose criterion is based on the mutual information
between the input X and its noisy representation

Ỹ = g(X ) + ε,

where the additive noise ε is a random vector in R
n and is

independent of X . (The divisive normalization function r is one
example of an encoding g , so that the noise applies to the output
of the transformation.)

We assume a low-noise regime in which the entropy h(ε) of
the noise is sufficiently small that the mutual information between
the input and its noisy representation can be approximated by the
entropy of the distribution of outputs Y = g(X ).

Proposition 2. Given independent random vectors X and ε
in R

n and a map g : Rn → R
n , the mutual information

I (X ; g(X ) + ε) can be approximated arbitrarily closely by the
entropy h(g(X )), given sufficiently small entropy h (ε).

According to this result, the efficient coding hypothesis amounts
to maximization of the entropy of the output distribution (74, 75)
net of metabolic costs.† We thus consider a stimulus encoding
g : Rn →Δ to be efficient if the resulting output distribution
maximizes, among all distributions with support equal to Δ, the
entropy of Y net of the expected cost E[c(Y )].

Characterizing the Optimal Output Distribution. Ignoring
metabolic costs, our efficiency criterion amounts to a multivariate
version of histogram equalization and requires that all feasible
outputs occur equally often. Among all distributions attaining
the same range of values as divisive normalization, the entropy-
maximizing distribution of mean firing rates is uniform over its
simplex support Δ. Note that, constrained to such a support,
the uniform distribution is not statistically independent across
dimensions (as would be the case in absence of constraints), yet
this distribution does result from the optimal encoding.

The following proposition (cf. 76) characterizes the optimal
output distribution taking into account any metabolic costs,
allowing for potentially more empirically realistic firing-rate dis-
tributions.

Proposition 3. Fix a random vector Y (the representation) with
bounded support C in R

n
+ and a continuous and bounded cost

function c : C → R+. The pdf of the distribution that maximizes
the entropy of Y net of the expected cost, i.e., that maximizes

†Other, more general approximations are possible (65) but, for mathematical simplicity, are
not considered here. However, Theorem 1 is general and could be combined with variants
of Proposition 2.
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Fig. 1. Univariate example of how divisive normalization transforms a stimulus distribution into a distribution over outputs. If a stimulus s follows a Pareto
distribution (Left column), with shape parameter β (and μ = 0, σ = 1), the divisive normalization transform of x = s (Center column), with appropriately chosen
parameter α, ensures that the resulting representation y = r(x) follows the entropy-maximizing uniform distribution (Right column).

h(Y )− E [c (Y )], among all distributions with support C, is given
by

fY (y) =
e−c(y)∫

C e
−c(z )dz

[3]

for y in C.

For example, assuming that the cost of a representation is linear
in the sum of all firing rates gives rise to a truncated exponential
output distribution fY (y)∝ 1{y∈C} exp (−κ

∑n
i=1 yi), which

is in line with empirically observed firing rates in response to
natural scenes (77, 78). Using high firing rates less frequently,
it optimally balances the informational benefit of a wide range
of firing rates with the cost of relying on metabolically costly
high firing rates. Other special cases of interest include costs that
take the quadratic form c(y) = κy · y , in which case fY (y) is
truncated normal on C, and costs that are constant in y , in which
case fY (y) is uniform on C.

Characterizing the Efficiently Encoded Input Distribution. By
mapping inputs x to their representations r(x ), divisive nor-
malization transforms any stimulus distribution fS into a cor-
responding distribution of outputs or firing rates. Our main
mathematical result describes this transformation by relating any
stimulus distribution to the output distribution that results under
divisive normalization and vice versa.

Theorem 1. Let X in R
n
+ be a random vector with continuous pdf

fX and r : Rn
+ →Δ be the divisive normalization mapping. Let

Y = r(X ) and y = (y1, . . . , yn) = r(x ) denote the output of
the divisive normalization transformation, with pdf fY . Then the
two pdfs satisfy, for any x ∈ R

n
++,

fX (x ) = γnαn bα
∏n

i=1 x
α−1
i

(bα +
∑n

i=1 λixα
i )

n+1 × fY (y). [4]

The proof uses the change-of-variables formula for random
vectors (e.g., ref. 79, theorem 8.1.7) and again relies on the matrix
determinant lemma to compute the determinant of the Jacobian
of r in closed analytical form.

Given Proposition 2 and the shape of the optimal output distri-
bution provided by Proposition 3, Theorem 1 lets us characterize,
for any metabolic cost function, the stimulus distribution for
which divisive normalization is an efficient encoding in a low-
noise regime.

Fig. 1 illustrates this for the univariate special case (n = 1)
absent metabolic costs. Histogram equalization on [0, γ/λ]
requires that the output distribution fY (y) is uniform over
this range. A univariate Pareto distribution with pdf fX (x ) =
βxβ−1/(1 + xβ)2 is thus mapped into an entropy-maximizing
uniform distribution by a transformation whose derivative is
γαλxα−1/ (λ(1 + xα))

2 as in Theorem 1 (with α= β and
λ= bα), which indeed integrates to the univariate divisive
normalization formula γxα/(bα + λxα).

For the general case, the following result states the condition on
the stimulus distribution for divisive normalization to maximize,
among all distributions with support equal to Δ, the entropy of
the resulting output distribution net of expected costs:

Theorem 2. Divisive normalization of x = s − μ is an efficient
encoding of a stimulus S for a cost function c if and only if 1) the
stimulus distribution has joint pdf, for s > μ,

fS (s1, . . . , sn ;μ,σ,β, γ, b, c)

= γnβn

∏n
i=1 (si − μi)

β−1
/bβ(

1 +
∑n

i=1

(
si−μi

σi

)β
)n+1

× e−c(r(s−μ))∫
Δ
e−c(z )dz

, [5]

and 2) the parameters satisfy α= β and λi = (b/σi)
α.

Note that the efficiently encoded distribution depends on the
metabolic cost function c and also on the parameters of the
divisive normalization transform. The efficiently encoded input
distribution shares the parameters γ and b with the divisive
normalization transform. Additionally, efficiency requires that the
exponent α of the divisive normalization transform matches the
shape parameter β > 0 of the input distribution and that the nor-
malization weights λi are inversely proportional to the scale pa-
rameters σi > 0. This reflects the fact that scaling inputs requires
adjusting normalization weights to maintain the efficiency condi-
tion of Theorem 1. Of course, other parameterizations of this distri-
bution are possible, but the scale parameters σi reflect the extent to
which λi and b are exchangeable, and they will be helpful below.

Fig. 2 illustrates Theorem 2 for the bivariate case and metabolic
costs that are constant (Fig. 2A) or linear (Fig. 2B) in the sum
of the firing rates of all neurons. Note that the input distribution
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Fig. 2. Divisive normalization transforms the distribution of stimulus s into a distribution over outputs y = r(x). In this bivariate example with σ = λ = 1,
b = 1, and two values of α and β, joint probability densities are plotted with darker color representing higher density. Marginal densities are shown in the
adjacent plots. The Pareto distributions in A are transformed into the uniform distribution over the simplex Δ (black triangle) that is efficient absent metabolic
costs (Theorem 3). B shows the qualitatively similar stimulus distributions that are transformed into the truncated exponential distribution that is efficient under
linear metabolic costs (Theorem 2).

that divisive normalization efficiently encodes has a higher density
for small values for linear metabolic costs than it does absent
metabolic costs. This reflects the fact that, in the presence of
metabolic costs, higher firing rates should be used less frequently.

Constant Metabolic Costs. An important special case of inter-
est is constant metabolic costs, since the problem then reduces
to maximizing information transmission, which is a common
formulation of the efficient coding hypothesis. Theorem 3 states
the result for this special case, which makes a particularly sharp
prediction that can be viewed as a benchmark generalized by
Theorem 2. Moreover, Fig. 2 demonstrates that the qualitative
shape of the efficiently encoded stimulus distribution appears to
be robust to the exact assumption on metabolic costs. Recall that
the joint survival (or complementary cumulative distribution)
function F̄S (s) of a random vector S is defined as

F̄S (s) = PS (S1 > s1, . . . ,Sn > sn).

Theorem 3. Divisive normalization of x = s − μ is an efficient
encoding of a stimulus S under constant metabolic costs if and only
if 1) the stimulus distribution is a multivariate Pareto type III
distribution with joint survival function

F̄S (s1, . . . , sn ;μ,σ,β) =

[
1 +

n∑
i=1

(
si − μi

σi

)β
]−1

[6]

and joint pdf

fS (s1, . . . , sn ;μ,σ,β) = βn
n!

∏n
i=1

1
σi

(
si−μi

σi

)β−1

(
1 +

∑n
i=1

(
si−μi

σi

)β
)n+1

[7]
for s > μ, and 2) the parameters satisfy α= β and λi = (b/σi)

α.

Theorem 3 is a corollary of Theorem 2 for the special case of con-
stant (or zero) metabolic costs. According to Theorem 3, which is
illustrated for the bivariate case in Fig. 2A, the efficiently encoded
stimulus distribution is a particular multivariate Pareto type III
distribution (80, 81).‡ Note that this particular Pareto type III
distribution is parameterized by a homogeneous shape parameter
β > 0 along with location parameters μi and scale parameters

‡The minus sign in ref. 80, equation 6.1.17 appears to be a typo.
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σi > 0. As above, efficiency requires that the parameters λi and
α of the normalization formula should be tuned to the stimulus
distribution as follows: The exponent α should be set to the
shape parameter β of the distribution, and the normalization
weights λi = (b/σi)

α should be inversely proportional to the
(transformed) scales of the distribution. Note that Eq. 7 is ob-
tained from Eq. 5 by imposing constant metabolic costs and
evaluating the resulting integral in the denominator, which results
in the cancellation of γ and b (see proof in SI Appendix). Under
constant metabolic costs this leaves γ and b as free parameters.
As mentioned above, the parameter γ can be interpreted as the
constraint on the sum of firing rates, and b is a semisaturation
constant.

The joint and conditional densities of this Pareto type III
distribution are plotted in SI Appendix for a range of parameter
values. Its marginal distribution is a univariate Pareto type III with
cumulative distribution function (cdf )

FSi
(si ;μi ,σi ,β) =

1

1 +
(

si−μi

σi

)−β
[8]

for si > μi , whose mean is, for β > 1, given by

E[Si ] = μi + σi
π/β

sin(π/β)
. [9]

SI Appendix contains expressions for the variance and further
moments. The marginal Pareto distribution is heavy tailed and for
μi = σi = β = 1 it is an exact power law

FSi
(si ;μi = 1,σi = 1,β = 1) = 1− 1/si [10]

for si ∈ [1,∞). This observation is interesting given that many
naturally occurring quantities exhibit approximate power-law
characteristics (82–84). For μi = 0, the marginal distribution is a
univariate log-logistic distribution, sometimes also referred to as
a Fisk (85) distribution.

Empirical Analysis of Natural Stimulus Statistics. If divisive
normalization has evolved as an efficient computation, our result
suggests that it may have adapted to environments whose stimulus
statistics are well described by multivariate Pareto (type III) distri-
butions. We examine this hypothesis in the visual domain where
there is considerable empirical evidence on stimulus statistics to
which we can relate our result. In particular, we ask whether
the Pareto distribution we have found to be efficiently encoded
exhibits the kind of statistical dependence that is commonly found
in filter responses to natural images (35, 51, 56, 86). We first
note that the pairwise covariance of the efficiently encoded Pareto
distribution (Eq. 6) is, for β > 2 and i �= j , given by ref. 80,
equation 6.1.29:

Cov(Si ,Sj )

= σiσj

(
Γ

(
β + 1

β

))2
(
Γ

(
β − 2

β

)
−
(
Γ

(
β − 1

β

))2
)
,

[11]

where Γ is the gamma function.
To assess whether the Pareto distribution and its correlation

structure are an empirically relevant model of natural image statis-
tics, we performed a simple exploratory analysis (Fig. 3 A–D) us-
ing images from the van Hateren image dataset (87). We obtained
the joint histogram of the responses of a pair of filters differing in
orientation (shown in Fig. 3C for the example image of Fig. 3B),

as well as the corresponding conditional histogram (Fig. 3D).
The characteristic “bow-tie” shape of the conditional histogram is
an empirical regularity observed in numerous naturalistic stimuli
(35, 86).

Using the filter response data, we obtained maximum-
likelihood estimates, for each image separately, of the parameters
of a bivariate Pareto distribution (extended to R

2; see Materials
and Methods). For comparison, we also fitted a bivariate
t-distribution (with the same number of parameters), as has
been used to model natural image statistics (59, 88–90). Fig. 3A
shows the distribution of the resulting log-likelihoods. The fact
that the log-likelihoods of the Pareto model are greater than those
of the multivariate t model (means: −5.19× 106 for Pareto
and −5.65× 106 for t-distribution) suggests that the Pareto
distribution is a strong contender as a model of natural image
statistics. However, we do not consider our analysis to be defini-
tive, and further research is required to determine how well the
Pareto distribution describes image statistics quantitatively and
qualitatively. But this analysis does demonstrate that the Pareto
distribution, which we derived from first principles, is also likely to
be an empirically relevant description of natural stimulus statistics.

Fig. 4 illustrates why the Pareto distribution may describe natu-
ral stimulus statistics well. The depicted conditional histogram of a
bivariate Pareto type III distribution with β = 1 (extended to R

2)
closely matches the empirically observed statistical dependence in
filter responses to natural images. We conclude that the efficiently
encoded Pareto distribution exhibits key features of naturalistic
stimulus distributions, including this kind of statistical depen-
dence as well as heavy-tailed marginal distributions. We further
note that the average estimate for β was 1.2 (SI Appendix, Fig. S1),
which is comparable to estimates of the divisive normalization
exponent (α) from neural data (6). This may suggest that the
divisive normalization parameter α is indeed tuned to the shape
parameter β of the Pareto distribution.

Relation to Existing Models of Natural Stimulus Statistics. This
section explores the connections to existing models of natural
stimulus statistics, with the goal of providing a foundation for
future research. We first show how the statistical dependence
of the Pareto distribution can capture the conditional variance
dependence that is commonly observed in bow-tie plots (86). To
see this, assume that S1, . . . ,Sn are filter responses that are dis-
tributed according to a multivariate Pareto type III distribution.
The variance of a filter response Si conditional on all other filter
responses is then, for β = 1 (assumed for tractability) and n > 2,
given by

Var(Si |{Sj = sj}j �=i)

=
σ2
i n

(n − 1)2(n − 2)

⎡
⎣1 +∑

j �=i

(
sj − μj

σj

)⎤⎦
2

=
σ2
i n

(n − 1)2(n − 2)

⎡
⎣1 + 2

∑
j �=i

sj − μj

σj
+

∑
j �=i

∑
k �=i,k �=j

sj − μj

σj

sk − μk

σk
+
∑
j �=i

(
sj − μj

σj

)2
⎤
⎦.
[12]

The conditional variance dependence is thus quadratic, in
accordance with Schwartz and Simoncelli (35) who use a sim-
ilar quadratic model of the variance dependence observed in
conditional histograms. Unlike in their model, the conditional
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Fig. 3. Fitting natural stimulus statistics (see Materials and Methods for details). (A) Scatterplot showing the log-likelihood (llh) of the best-fitting Pareto (x axis)
and multivariate-t (y axis) models to the statistics of naturalistic images from the van Hateren dataset (87). Each dot corresponds to one image and the
histograms show the corresponding marginal distributions. (B) An (additional) example image from the van Hateren dataset, with log-transformed brightness
for better visibility. (C) Joint histogram for the example image of the responses of two filters with orientations of 45◦ and 135◦ counterclockwise, respectively
(brightness on log scale). (D) Corresponding conditional histogram of the same filter responses, showing the distribution of responses of one filter (y axis)
conditional on the response of the other filter (x axis). The brightness is rescaled in each column to use the full range of intensities, in line with the literature (35).

distribution giving rise to this variance dependence is not Gaus-
sian. The conditional distribution of the Pareto distribution in
Eq. 6 has cdf

FSi |{Sj=sj}j �=i
(si ; {sj }j �=i ,μ,σ,β) =

1−

⎡
⎢⎣1 +

(
si−μi

σi

)β

1 +
∑

j �=i

(
sj−μj

σj

)β

⎤
⎥⎦
−n

[13]

for si > μi , as we show in SI Appendix.§ For suitable parameter
values this reduces to a log-logistic distribution, closely related
to the conditionally lognormal distribution used by Wainwright
et al. (55).

Next, we show that the Pareto distribution also has a connec-
tion with models of image statistics based on Gamma-weighted
scale mixtures of Gaussian random variables (60). It turns out
that the Pareto type III distribution can be expressed as a Gamma
mixture of transformed exponential (or Weibull) random variables
(ref. 80, chap. 6.2). The following proposition shows that the
efficiently coded distribution of Eq. 6 is a particularly simple
mixture of transformed standard exponential random variables:

§Note that the conditional distribution is a univariate Pareto distribution of type IV (rather
than III). Pareto type III distributions are not closed under conditioning.

Proposition 4. Let Ui
iid∼ Exp(λ= 1) for i = 1, . . . ,n , and let

Z ∼ Exp(λ= 1) independently of all Ui . Then the distribution of
S = (S1, . . . ,Sn) with

Si = μi + σi (Ui/Z )
1/β for i = 1, . . . ,n, [14]

is a Pareto type III distribution with the joint survival function
F̄S (s1, . . . , sn ;μ,σ,β) of Eq. 6.

This result not only facilitates comparisons with existing mod-
els of naturalistic stimuli, it is also of practical importance, since
it provides a simple way to draw samples from the multivariate
Pareto type III distribution.

Discussion

We have characterized the family of stimulus distributions for
which divisive normalization maximizes mutual information in
the low-noise limit. Absent metabolic costs, this family consists
of particular multivariate Pareto type III distributions, which
divisive normalization transforms into an entropy-maximizing
output distribution. Taking into account metabolic costs of an
arbitrary shape, the efficiently encoded input distributions take
a generalized form in which inputs resulting in costlier outputs
occur less frequently. We note that our result does not imply that
divisive normalization is the only neural encoding to satisfy the
necessary and sufficient condition for efficiency, even with a Pareto
stimulus distribution. Rather, any encoding whose Jacobian
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Fig. 4. Conditional histogram of a bivariate Pareto distribution extended to
R

2, with μ = 0, σ = 1, and β = 1. Brightness is proportional to the probability
of s2 conditional on s1, rescaled in each column to use the full range of
intensities, as is customary in the literature. The statistical dependence closely
resembles the bow-tie shape observed empirically for many naturalistic
stimuli (35).

satisfies, given some input distribution, the equivalent of Eq. 4 in
Theorem 1 attains the same output distribution and will thus be
equally efficient. Yet for divisive normalization to be efficient, the
stimulus distribution must necessarily be of the prescribed type.

We further demonstrated that the Pareto distribution is consis-
tent with empirical findings on naturalistic stimulus statistics. In
the context of vision, the Pareto distribution captures key features
observed in the statistics of natural images that are commonly
modeled with Gaussian scale mixtures (60, 91). Our empirical
analysis demonstrated that the Pareto distribution may be a
similarly good model of natural-image statistics. Proposition 4
identifies the Pareto distribution as a mixture of transformed
exponential random variables and may thus prove helpful in
further exploring relations to existing Gaussian mixture models of
natural stimuli. While sharing some features with such models,
the Pareto distribution differs in other respects. For example,
unlike Gaussian scale mixtures, it is not elliptically symmetric.
This means that it can be skewed but is not invariant to rotations
of the coordinate system and may thus capture joint histograms
resembling a diamond or rhombus rather than an ellipse. Fur-
thermore, the Pareto distribution also captures features of typical
luminance and contrast distributions (92). We leave exploring
these issues for future research.

Proposition 4 also opens the door to future work exploring
more general coding mechanisms that are efficient for a wider class
of input distributions. The distribution we find to be efficiently
encoded is a special case of a Pareto type III distribution that is
restrictive in the sense that a single shape parameter β governs
the distribution’s dependence structure as well as the shape of its
marginals. Proposition 4 suggests that another fruitful direction,
beyond considering more general Pareto distributions, may be
to consider mixtures of an exponential random vector whose
components are not independent, allowing for a more general
covariance structure.

It would also be desirable to generalize our result to allow
normalization weights to differ across pairs of neurons. Ruling
out the case where different neurons in a population interact with

different weights eliminates the possibility that neurons represent-
ing more proximal inputs normalize each other more strongly than
those representing more distant inputs. Such distance-dependent
normalization would be an efficient code of stimuli whose statis-
tics reflect a notion of proximity. For example, this is the case for
contrast in images, where correlation is decreasing as a function
of distance. Our current framework does not incorporate such
a distance notion for reasons of analytical tractability, but an
extension would be of interest.

Our results provide a sharp testable prediction that can poten-
tially be used to test empirically the efficient coding hypothesis.
In a neural system whose response function is well described
by divisive normalization, testing whether the inputs are Pareto
distributed amounts to testing a necessary condition for the
efficient coding hypothesis to hold. A more rigorous and de-
manding test would also estimate the normalization parameters
as well as the parameters of the distribution and test whether they
satisfy the conditions imposed by Theorems 2 and 3. Formally, if
the efficient coding hypothesis holds, then the hypothesis that
such a system’s inputs are Pareto distributed with α= β and
λi = (b/σi)

α must be true (under the maintained hypothesis of
constant metabolic costs). Rejecting this null hypothesis would
thus result in the rejection of the efficient coding hypothesis.
Experiments that systematically manipulate the distribution of
sensory stimuli (or choice sets) in a subject’s environment could
even examine whether the divisive normalization parameters (such
as α) optimally adapt to different stimulus distribution contexts
(e.g., Pareto distributions with different values for β). Of course,
less demanding tests are possible and informative.

It is important to stress that according to Theorem 2, test-
ing the input distribution is a test of the joint hypothesis that
coding is efficient and metabolic costs are of a particular form.
For instance, Pareto-distributed inputs are only necessary for the
efficient coding hypothesis under the maintained assumption of
constant metabolic costs. This is a feature, not a bug. Theorem 2
can be viewed as a representation theorem, analogous to the eco-
nomics tradition of testing whether choice behavior is consistent
with maximizing some utility function. This provides additional
degrees of freedom: If the input distribution adheres to Eq. 5 for
some metabolic cost function, then the efficient coding hypothesis
would not be rejected.

Our work raises the possibility that divisive normalization is
ubiquitous because it is an adaptation to Pareto distributions
that are themselves widespread—in stimulus statistics but also,
perhaps, in the statistics of other quantities. One example of such
a quantity is firing rates of neurons, which in many neural systems
appear to follow lognormal distributions (93, 94, 95), whose
heavy-tailed shape closely resembles that of Pareto distributions.
If firing rates of an upstream system are approximately Pareto
distributed, it is conceivable that divisive normalization may be an
adaptation to the firing-rate distribution of neurons from which
it receives input. But, of course, the resulting outputs would then
not be Pareto distributed, raising the question of whether the
observed cascade of normalization-like modules in the brain is to
some extent redundant. If each stage in a series of divisive normal-
ization levels in the brain receives the preceding stage’s output as
its input, then each stage faces a different distributional structure.
Understanding how several stages of divisive normalization may
work together to produce an efficient code is an open issue that
is beyond the scope of this paper. Perhaps, applying our result to
distributions of firing rates will help shed light on such issues.

The fact that divisive normalization has been implicated in
settings beyond sensory processing and perception, particularly
in value representations (17, 18) and choice (19, 21), raises the
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question of whether the Pareto distribution is also an ecologically
relevant description of value-based choice environments. The
univariate Pareto distribution of Eq. 8 (with μ= 0) is often used
to model wealth and income distributions in economics, which is
where it originated (96, 97). Moreover, the Pareto distribution is
intimately related to Zipf ’s law and is observed in many complex
systems (82). Interestingly, it is also remarkably consistent (98)
with Benford’s law (99, 100), according to which the leading digits
in many naturally arising sets of numbers are likely to be small.

The heavy-tailed power-law characteristic of the Pareto distri-
bution is relevant not only in sensory contexts, but also in many
economic contexts (101, 102) ranging from city-size distributions
to stock returns and trading volumes (103). While empirical
evidence from choice environments is lacking, the widespread
occurrence of Pareto distributions in economic contexts hints that
divisive normalization might be observed in value representations
and choice behavior because it is an efficient code of Pareto-
distributed values within choice sets. An important caveat to this
hypothesis is that mutual information is less relevant as an objec-
tive function for a decision maker than it is in the sensory domain.
The efficient code for a utility-maximizing decision maker differs
from the information-maximizing code (104–106). Conditions
under which divisive normalization is efficient for choice remain
to be determined.

In conclusion, our theoretical results make a simple and sharp
prediction about why divisive normalization may be observed
across a wide range of settings. This prediction can be tested
in different domains, ranging from electrophysiological studies
to empirical studies of value distributions and experiments on
choice behavior. Our findings provide a framework for future
research to test empirically and experimentally whether divisive
normalization occurs in environments in which it is an efficient
computation.

Materials and Methods

All proofs are given in SI Appendix. The empirical analysis examined the statis-
tics of filter responses to naturalistic images. For a set of 100 images from

the (linear) van Hateren image dataset (87), we computed filter responses
using a steerable pyramid (107) with four levels and four bands differing in
orientation, using the matlabPyrTools package. (See https://github.com/LabFor
ComputationalVision/matlabPyrTools and www.cns.nyu.edu/∼eero/STEERPYR/
for more information.) We examined the statistical dependency between a pair
of filters of the pyramid’s second level with orientations of 45◦ and 135◦ coun-
terclockwise, respectively (108, figure 1.9). For each image separately, we fitted
the joint distribution of these filter responses by obtaining maximum-likelihood
estimates of the parameters of two bivariate distributions. The first distribution is
a Pareto type III distribution extended to R2, in the sense that the density at any
s ∈ R

2 is given by 1
4 fS(|s|; μ= 0, σ, β), where fS is as in Eq. 7. We imposed

the restriction σ1 = σ2 to ensure that the number of free parameters is not
larger than for the second distribution, which was a bivariate t-distribution with
correlation parameter c and degrees of freedom df. The estimation was performed
using the mle function of Matlab R2022a.

Data, Materials, and Software Availability. Computer code can be accessed
on GitHub (https://github.com/stefan-f-bucher/divisive-normalization-efficiency)
(109). The van Hateren image dataset (87) is available at https://pirsquared.org/
research/vhatdb/.
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