
Understanding the Hows and Whys
of Decision-Making: From Expected Utility

to Divisive Normalization

PAUL GLIMCHER

Institute for the Interdisciplinary Study of Decision Making, New York University,
New York, New York 10013

Correspondence: pg3@nyu.edu

Over the course of the last century, economists and ethologists have built detailed models from first principles of how humans

and animals should make decisions. Over the course of the last few decades, psychologists and behavioral economists have

gathered a wealth of data at variance with the predictions of these economic models. This has led to the development of highly

descriptive models that can often predict what choices people or animals will make but without offering any insight into why

people make the choices that they do—especially when those choices reduce a decision-maker’s well-being. Over the course

of the last two decades, neurobiologists working with economists and psychologists have begun to use our growing under-

standing of how the nervous system works to develop new models of how the nervous system makes decisions. The result, a

growing revolution at the interdisciplinary border of neuroscience, psychology, and economics, is a new field called Neuro-

economics. Emerging neuroeconomic models stand to revolutionize our understanding of human and animal choice behavior

by combining fundamental properties of neurobiological representation with decision-theoretic analyses. In this overview, one

class of these models, based on the widely observed neural computation known as divisive normalization, is presented in

detail. The work demonstrates not only that a discrete class of computation widely observed in the nervous system is

fundamentally ubiquitous, but how that computation shapes behaviors ranging from visual perception to financial deci-

sion-making. It also offers the hope of reconciling economic analysis of what choices we should make with psychological

observations of the choices we actually do make.

The postenlightenment study of human decision-

making has its roots in the work of mathematicians and

economists like Blaise Pascal, Daniel Bernoulli, Adam

Smith, and David Ricardo. These scholars sought to ex-

plain regularities in human behavior from first principles.

For these early theorists, that meant defining algorithms

that maximized individual gain, profit, or well-being

and that thus gave rise to observable market level regu-

larities. These scholars took as their focus the study of

“why”—why it was that people made the choices they

did from a mathematical and theoretical point of view.

While revising many of the key assumptions of these

early scholars, economists of the early 1900s like Paul

Samuelson (Samuelson 1947) and John von Neumann

(Neumann and Morgenstern 1944) made huge strides in

this direction by defining how decision-making ought to

work in humans. They developed theories that fundamen-

tally described how “optimal” decision-makers should

behave.

In the 1960s, however, it started to become clear that

humans did not always behave in exactly the ways pre-

dicted by these theories. Work by economists like Mau-

rice Allais (Allais 1953) and psychologists like Amos

Tversky and Daniel Kahneman (Kahneman and Tversky

1979) began to reveal systematic patterns of behavior that

violated the predictions of the economic models. These

were behaviors that appeared to reduce the well-being of

individuals and even of whole economies. The psychol-

ogist Herbert Simon (Simon 1955) responded to this

observation by suggesting that the limitations of our cog-

nitive or neurobiological architecture might be the cause

of these inefficiencies. The majority of those cataloging

these inefficiencies, however, devoted their energies to

developing descriptive models. These were models that

could predict what people would choose in any situation,

even if the models offered little or no insight into why

biological decision-makers produced these apparently

self-destructive behaviors.

In the early 2000s, a group of neurobiologists, working

with economists and psychologists, sought to reconcile

this tension by studying how the nervous system actually

makes decisions. These interdisciplinary scholars, work-

ing with like-minded economists and psychologists,

rapidly gave birth to the interdisciplinary field of Neuro-

economics. Within Neuroeconomics, a number of models

of how the nervous system encodes and processes de-

cision-related information began to emerge in the 2000s

and early 2010s. One of these models, the focus of this

review, has its roots in the Efficient Coding Hypothesis of

Horace Barlow (Barlow 1961). Barlow had hypothesized

that because both building internal representations of the

outside world and performing computations on those rep-

resentations is metabolically costly, the representational

frameworks and computational processes used by organ-
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isms should naturally trade off completeness against

metabolic cost. He hypothesized that an animal ner-

vous system would be “efficient” in the sense that it

would devote energy only to valuable computations and

goals, thus minimizing costly redundancies in its internal

representations.

In the mid-2000s, my colleagues and I began to see

some parallels between these statements and Herbert

Simon’s hypothesis that limitations imposed by our

cognitive or neurobiological architecture might be the

cause of the apparent “inefficiencies” in human choice

behavior identified by psychologists. It might be, we hy-

pothesized, that decision-making systems were trading

off representational costs at the neurobiological level

against benefits at the level of behavior—and that this

trade-off might account for the apparent gap between

the whys of economists and the whats of psychologists.

If that was true, then it might even be the case that

human choice behavior was efficient, once one took

into account the neurobiological costs of representation

and computation.

EFFICIENT CODING AND THE THEORY

OF CORTICAL REPRESENTATION

The theory of efficient coding emerged, in part, from

Keffer Hartline’s observation (Ratliff and Hartline 1959)

that the activity of sensory neurons in the retina encodes

not just the photons falling directly on the centers of their

receptors but is also influenced by the structure of sur-

rounding visual stimuli. Barlow noted that the precise

relationship between center and surround described by

Hartline would have the effect of creating more neural

activity when the center and surround differed and very

little activity when center and surround were homoge-

neous. Drawing on Claude Shannons’ Theory of Informa-

tion (Shannon and Weaver 1949), Barlow proposed that

to be efficient, neurons must devote action potentials to

sensory stimuli in proportion to the degree to which those

stimuli are surprising, and he proposed that it was the

differences, rather than the homogeneities, that carried

surprising information.

By the early 1990s, it had become clear that the rela-

tionship between center and surround in visual cortical

neurons was more complex than even Barlow had sus-

pected. Cortical area V1 neurons sensitive to vertically

oriented bars, for example, responded more strongly

when horizontally oriented bars were arranged outside

their “classical” receptive fields and were suppressed in

a nonlinear way when vertically oriented bars were placed

at those same locations. David Heeger and his colleagues

(Heeger 1992; Heeger et al. 1996) responded to that ob-

servation by developing what came to be known as the

Heeger normalization model (Fig. 1A). In that model, the

firing rate of a given neuron (FR1) is described by

FR1 ¼
Stim1

s2 þ
P

i Stimi

: ð1Þ

Heeger’s idea was that the activity of a V1 neuron

reflected a direct excitatory input from its receptive field

(Stim1) that was modulated by the summed activity of all

of its neighbors (the set of all other Stimi). This modula-

tion was achieved by dividing the input activity by the

summed activity of the neighbors, a model that decreased

the FR, when the surround was similar. The model also

included a constant in the denominator: s2. Note that the

magnitude of s2 controls the rate of rise of the firing rate

function, as shown in Figure 1B. It should be noted that

Heeger’s model also included a number of other features

glossed over here.

In the late 1990s, Eero Simoncelli and others (Olshau-

sen and Field 1997; Simoncelli 2003) began to test the

hypothesis that models of this kind formally achieve Bar-

low’s goal: They maximize the information carried by

each action potential and by each neuron. To understand

their approach, consider a neural system that encodes the

luminance of a single square pixel surrounded by eight

other pixels (Fig. 2A). Simoncelli and his colleagues rec-

ognized that in the real visual world, the luminance of the

central pixel is not independent (or, formally, uncorre-

lated) with the luminance of the surrounding pixels. In

the real world, if we knew that the eight outer pixels were

black, we could be almost certain that the central pixel
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Figure 1. (A) The original divisive normalization model of Heeger and colleagues (Heeger 1992; Heeger et al. 1996). Visually
sensitive neurons receive a direct excitatory input that is rectified (negative responses are removed) by half-squaring. This rectified
output is then divided by the sum of the activity of similarly sensitive neighbors plus a constant, usually called s2. (B) Firing rate curves
for a simulated normalized neuron are shown for a high and a low value of s2. A low s2 focuses the dynamic range of the function at
low input values. A high s2 distributes the firing rate function over a larger range. (A, Courtesy of David Heeger.)
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was also black. Conditional on the outer pixels being

black, there is very little information gained by learning

that the central pixel is also black. An efficient neuron

would know that and would waste very few action poten-

tials to communicate this unsurprising fact.

Simoncelli and his colleagues (Schwartz and Simon-

celli 2001; Wainwright et al. 2002) thus took two ap-

proaches to revising the Heeger equation. At a purely

mathematical level, they set out to prove that there

exists some variant of the Heeger model that maxi-

mizes information per action potential and per neuron

for the real visual world. They were successful in this

regard. At an empirical level, they set about a massive

exercise analyzing real world photographs to see just

exactly how adjacent pixels of images are related. What

this second exercise yielded, and this is a critical insight,

was a matrix that shows the degree of relatedness

between adjacent pixels in the real world. The numbers

in each box in Figure 2B reveal how much knowing

the state of that pixel tells you about the central pixel.

This is, in the language of linear algebra, a correlation

matrix. Now with that insight in hand, we can easily make

sense of the model Simoncelli and his colleagues pro-

duced:

FR1 ¼
Stim1

s2 þ
P

i viStimi

: ð2Þ

The numerator remains the direct input to the neuron,

but now the denominator takes all of the activity in

nearby neighbors and multiplies each by the degree to

which it allows one to predict the value of Stim1. The

sum viStimi aggregates the total knowledge one can

derive from the activity of the neighbors about our

pixel, and then the equation pulls that information out

of the firing rate by dividing it away. The result is a

maximally efficient signal, “cleaned” of redundant

information.

What followed this demonstration were a host of papers

showing that divisive normalization models accurately

explained the firing rates of neurons in cortical sensory

areas ranging from V1 to V2 and even in auditory and

olfactory areas. (For a review of this literature, see Rey-

nolds and Heeger 2009; Carandini and Heeger 2012.)

NORMALIZATION MODELS

AND DECISION-MAKING

The observation that many cortical and subcortical sys-

tems appear to use a normalization-based encoding

scheme led Kenway Louie and I to test the hypothesis

in the late 2000s that cortical circuits important for deci-

sion-making might also use this encoding strategy (Louie

et al. 2011). Over the preceding decade my colleagues

and I had conducted detailed studies of the activity in the

lateral intraparietal area (LIP) of the monkey parietal cor-

tex. We had shown that the activity of these neurons often

appears to encode decision variable–like signals (Platt

and Glimcher 1999; Glimcher 2013). Each neuron in

LIP, we found, encodes the desirability of looking at a

particular point in extrapersonal space. We had hypothe-

sized that LIP firing rates could be thought of as encoding

a “priority map.” The higher the firing rate, the more the

animal wants to look at the location encoded by that

neuron.

Recall that the why theories of economists like von

Neumann tell us what an idealized decision-maker should

do when she makes a choice: As the magnitude of a reward

increases, a chooser should be more likely to pick that

reward (it should have higher priority), and as the proba-

bility of being rewarded declines, a chooser should be less

likely to pick that reward. These theories hypothesize that

choosers behave exactly as if somewhere in their brains a

numerical value called a decision variable is computed

and represented for each option and the process of choos-

ing is selecting the option having the highest decision

variable. Working from those theories in the late 1990s,

Michael Platt and I (Platt and Glimcher 1999) had shown

that neurons in LIP do follow the general predictions of

these why models, and we hypothesized that neurons like

those in area LIP could be viewed as physically instanti-

ating these decision variables, which my colleagues and I

came to call subjective values (Fig. 3).

Of course we knew that the why theories of economists

are imperfect predictors of behavior. We had always ar-

gued that the why models we used to explain cortical

firing rates should only be considered approximations.

It was with that caveat in mind that Louie and I formally

examined the firing rates of LIP neurons with a corti-

cal normalization model. To do that, we used a sim-

plified form of the Heeger–Simoncelli model that John
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Figure 2. (A) An array of local pixels from a photograph. (B) The correlation between a central pixel and eight surrounding pixels is
quite high in natural images.
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Reynolds and Heeger (Reynolds and Heeger 2009) had

recently proposed:

FR1 ¼
Baselineþ V1

s2 þ
P

i viVi

; ð3Þ

which included a baseline firing rate and took as inputs

the objective values of the rewards that the monkey (and

his neurons) were evaluating. Recall that a core prediction

of the normalization models is that stimuli in the surround

influence firing rate through the denominator. One can

see this influence as a process of decorrelation, achieved

by multiplying the activity in each of the other neurons by

a covariance matrix (v). Entirely equivalently, one can

see this as a process of “contextual suppression,” which

says the same thing in a less mathematical way. But how

should one think about contextual suppression in a deci-

sion-making system? One might imagine that the other

options currently under consideration by a chooser (like

the other stimuli presented near a visual receptive field)

form a kind of “context” that might modulate the firing

rate of the neuron under study.

Consider a situation in which the option represented

by neuron FR1 yields a much larger reward (say 1 mL of

water) than two other options being represented by two

other neurons. Under those conditions, our neuron might

be expected to have a very high firing rate, correctly sig-

naling that the reward under consideration is large com-

pared with the other two options under consideration. But

under conditions in which the two other options are of

much higher value than the 1 mL reward encoded by

FR1, then we might expect FR1 to show a much reduced

firing rate—even though the absolute value of the reward it

encodes is the same. The key idea here is that the FR1

neuron, if it followsthenormalization model, should report

the value of an option modulated by current context just as

V1 neurons report the orientation of a stimulus modulated

by local orientation context. (And, of course, both of

these contextual modulations are a form of decorrelation.)

To test the hypothesis that LIP neurons do use a nor-

malization-like encoding scheme, Louie and I examined

the delay-period activity of LIP neurons while monkeys

were presented with three options of variable magnitude

(Louie et al. 2011). What we found was that the neurons

were very much influenced by local context. And that this

local context effect could be best described using a nor-

malization model. Figure 4 shows this for a database of

neurons and compares the ability of three models to ac-

Figure 3. Firing rates for two neurons in the lateral intraparietal area (LIP). (A) Solid lines indicate average firing rates for a neuron as a
function of time under two conditions. The red line indicates average response on trials in which there was a high probability of reward.
The blue line indicates firing rate on trials with a low probability of reward. (B) A similar figure for varying reward magnitude. Red
identifies trials on which the monkey expects a large reward, and blue identifies trials on which the monkey expects a small reward.
(Adapted from Platt and Glimcher 1999.)
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count for those delay-period firing rates. Firing rates are

much better accounted for by the normalization model

than by two competing models that have been widely

used in the past.

THE “NORMALIZATION MODEL”

CONSIDERED AS A NETWORK

A key idea of the normalization model is that neurons

do not just represent their direct inputs, but that these

inputs are modulated by the activity of their neighbors,

a contextual sensitivity that maximizes their efficiency.

Barlow, Heeger, and Simoncelli had considered this in a

static sense: How should steady state firing rates incorpo-

rate context to maximize the information carried by each

action potential and by each neuron? Simoncelli largely

solved that problem, proving that a variant of the original

model (one incorporating a covariance matrix) maximiz-

es information. As Tom LoFaro, Louie, and I worked on

this problem, however, we began to wonder how real

neural circuits accomplish this decorrelation (LoFaro

et al. 2014). Figure 5 shows the simplest possible network

for computing this kind of normalization model. The val-

ues of two options, V1 and V2, serve as excitatory inputs to

encoding neurons R1 and R2. As in Figure 1, the R neurons

receive an inhibitory input (assumed to be divisive al-

though that is not critical) that pools together the outputs

of all of the R neurons. (In this network there are only two

R neurons, though we have shown that our findings gen-

eralize to large numbers of R–G neuron pairs.)

The excitatory neurons of the network are its backbone.

They get excitatory inputs that we think of as “value”

signals, but which in the visual cortex one might think

of as the contrasts of pixels. A network of inhibitory neu-

rons receives inputs from the excitatory neurons. One can

think of the strengths of the synapses connecting the ex-

citatory neurons to the inhibitory neurons as implement-

ing the covariance matrix of Equation 2, although for

simplicity here we will just treat those synapses as having

a fixed unit strength. That is all there is to this network. To

examine how such a simple network would behave

dynamically we need to represent how firing rates change

when inputs change with simple differential equations:

R neuron : t
dR

dt
¼ �Rþ V1

1þ G1

, ð4Þ

G neuron : t
dG

dt
¼ �G þ

X

i

viRi: ð5Þ

Notice that these equations describe how neuronal fir-

ing rates change from one moment to the next, they report

the first derivative of firing rate with respect to time. The

first equation represents the first derivative of the firing

rate for an R neuron, and the second equation represents it

for a G neuron. t is a time constant for these neurons.1

Notice that the R neuron responds with an increase in

firing rate when the strength of the input V increases. It

responds with a (divisive) decrease in firing rate when the

inhibitory neuron G increases its firing rate.

To better understand the behavior of such a network,

we can select a value for V1 and then solve the equations

to see how the firing rate of each neuron would evolve

over time for any possible preexisting firing rate in the R

and the G neuron. Figure 6 plots a graph of that mathe-

matical “experiment.” The arrows at each point on the

graph show how firing rates evolve from that point

when V1 ¼ 10. On such a plot, called a phase plane, we

can look for all of the places where (for a given input V1)

the first derivative of the R neuron or the G neuron goes

to zero. These two lines, called null clines, show where

each neuron is stable. Wherever these lines intersect,

where neither neuron changes, the network is in a stable

equilibrium state. Interestingly, we were able to prove in

a quite general way that these dynamic networks always

have one (and only one) stable equilibrium. Once the

input is set, the network evolves toward a unique equilib-

rium (regardless of how many R–G neuron pairs the net-

work contains).

To understand how important this fact is, we need to

rewrite the equations above in terms of actual firing rates

for R neurons. Equation 6 shows such a restating of these
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Figure 4. Comparison of predicted and observed firing rates for
three models: the original relative value model of Platt and
Glimcher (1999); the “difference model” underlying firing rates
in the drift diffusion model; and the normalization model.

V1 V2
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G1 G2

ωij

value input

output readout

Figure 5. A simple network for divisive normalization. Value
inputs (V ) enter excitatory neurons R, the activity of which is
reduced by a divisive inhibitory interneuron, G. For simplicity,
the model shown here includes only two pairs of neurons and
thus supports pairwise choice. Extension of the model to n pairs
yields results identical to the ones reported here for two-pair
models.

1Here we use a single time constant for both kinds of neurons, but our
findings are robust to the selection of time constant. We often set the time
constant for the R neurons to 10 msec and for the G neurons to 5 msec to
mirror the membrane time constants of excitatory and inhibitory cortical
neurons.
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equations, but rather than being plotted in continuous

time we plot it here in discrete time (this discrete form

representation is equivalent at equilibrium to the contin-

uous time form in Equations 4 and 5):

Rt ¼
V1

1þ
P�1

t¼ 0

P
i d

tviRit

: ð6Þ

What you can see is that the firing rate of an R neuron at

time t reflects the current excitatory input (V1) divided

by a denominator that may look complicated, but is not.

In the denominator is a double sum. The right-hand part

of the sum is familiar. It is simply the activity of the

inhibitory neuron that computes a (covariance matrix)

weighted sum of the R neurons (rather than the V inputs)

in the network:
P

i viRi. To capture the dynamics,

though, we have added one additional feature, a sum

over time. The outer sum and the d (which is a number

,1) cause the equation to weight current value-related

activity heavily (when t is small) and allows older value-

related activity to decay away (as t grows into the past).

The function of this “temporal summation” is simply to

exponentially decrease the effects of old inputs on the

network—to make old inputs decay away. We can think

of the size of d as representing the time constant of the

network.

To take our understanding one step further, let us alge-

braically separate the denominator into two parts: The

current activity of the excitatory network of R cells and

the past activity of those same cells. The next equation

shows that

Rt ¼
V1

1þ
P�1

t¼�1

P
i d

tviRit

� �
þ
P

i viRio

, ð7Þ

R ¼ V1

½s2� þ
P

i viVi

: ð8Þ

Now compare the dynamic equation (Equation 7) with

the original static Heeger–Simoncelli shown in Equation

8. The two equations are almost identical—the only big

difference is that the constant s2 has turned into some-

thing much more complicated and dynamic, as shown in

the bracketed parts of Equation 7. That in itself is an

important point; when you build a divisive network of

almost any kind you have something that generates as

an output much like the original normalization models.

To put that another way, normalization models are what

divisive (and many subtractive) networks naturally do.2

Now consider the term that has replaced s2. This is the

term that captures all of the temporal dynamics of the

system. When the firing rate is changing but the inputs

are constant, it is because this part of the equation is

changing as time passes. What is critical about that is:

Whenever the stuff in the bracket is not changing—when

the stuff in the bracket is a constant and the inputs are

fixed—the system is at equilibrium and becomes a Hee-

ger–Simoncelli-type model. The Heeger–Simoncelli

model is, it turns out, a special case of a divisive network.

It is what a divisive network does when it comes to rest.

Recall from Figure 1A that the value ofs2 controls how

steeply the firing rate function rises. A small constant

here causes the function to rise quickly, and a large con-

stant causes it to rise slowly. So what is this constant in the

general form? It is simply an exponentially weighted sum

of past activity derived from past input values—what we

would call past “options” in decision-making. In more

formal terms, it is an “adaptive expectation.” It is the

expected average value of the upcoming inputs, based

on an analysis of recent history. What the “constant”

does in this dynamic network is to adjust the firing rate

function so it has the greatest possible resolution near the

current expectation. What that means is that these classes

of networks are much more powerful and general than

one might have expected. At equilibrium they computes

a form of divisive normalization. Their denominators

contain a “tuning constant” that maximizes the firing

rate function’s sensitivity around the network’s expected

input.

First, that tells us that the static equations of the Heeger

and Simoncelli forms in fact describe the unique equilib-

rium state of nearly any network of this class. If you have

an excitatory input to your excitatory neuron and a pool-

ing inhibitory network, you wind up with a network that

at equilibrium computes divisive normalization.

NORMALIZATION NETWORKS

AND NEURONAL DYNAMICS

Interestingly, these dynamic networks make an addi-

tional prediction. Recall that R neurons receive excitatory

value input (Vs) and inhibitory input from the G neurons,

G, but the G input is delayed, reflecting the time it takes

for the inhibitory network to become active. One can see

this in Figure 6, which shows the R neuron overshooting

before being pulled down by the G neuron.

0 10
0

10

G activity (A.U.)

R
 a

ct
iv

ity
 (A

.U
.)

Figure 6. A phase plane trajectory for a single pair network. The
red line indicates the firing rate path when the value input is
abruptly stepped to a positive value. Dashed lines identify the
null clines for the two neurons. The intersection of the dashed
lines marks the unique equilibrium state for the network: divisive
normalization.

2Note, however, that the denominator in the Heeger form (Equation 8)
has Vs in it. The denominator here (Equation 7) has Rs in it. We have
shown that this distinction does not make much of a difference at equi-
librium. It does make a significant difference with regard to network
dynamics. Louie, LoFaro, Webb, and I have shown that the actual dy-
namics of LIP neurons are much more closely approximated by this form,
a point discussed next and in Louie et al. (2014).
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Thus, R neurons respond to a step change in V with a

transient burst-like increase before they settle down to

stable “delay-period” activity. In real life, area LIP neu-

rons have long been known to show what is often called a

“visual burst” before sustained delay-period activity.

What the model reveals is that for divisive (or subtractive)

networks of this kind there is nothing “visual” about the

“visual burst.” The early rise in firing rate is the natural

network response when its input goes up. The “burst” is

the off-equilibrium response of the network before it set-

tles to a sustained equilibrium.

Louie and I (Fig. 7; Louie et al. 2014) examined the

dynamics of LIP neurons to see how closely their “visual

burst” could be predicted by these kinds of model. What

we found was that the magnitude and timing of the burst

and the structure of its later suppression were exactly

what would be expected of such a network.

NORMALIZATION NETWORKS

AND CHOICE BEHAVIOR

Normalization networks capture the idea that neurons

have limited capacity and that they distribute this capacity

to maximize their efficiency. But their limited capacity

necessarily means that they perform imperfectly as the

amount of information they encode grows. Although we

have not focused on this issue yet, the source of that ca-

pacity limitation is neuronal noise. If firing rates could

encode input values to 20 decimal places, then they would

have no real capacity limit. The fact that firing rate vari-

ance (roughly) scales with mean rate, however, means that

these neurons are quite limited in their precision.

Consider a network representing two high-valued op-

tions, each of almost equal value and a third low-value

(and undesirable) option. Figure 8A shows a firing rate

distribution for three R neurons encoding the values of

these three options at equilibrium. Each of the colored

curves represents the distribution of observed firing rates

over time. What we can see is that the network does a

good job of separating (decorrelating) the two highest-

valued options, even given that the firing rates fluctuate

randomly within the colored distributions. Consider,

however, what happens as we increase the value of the

undesirable option (Fig. 8B). The firing rate functions

begin to overlap—the decorrelation begins to fail. And

thus it gets less and less likely that the network will

uniquely identify the highest-valued option as option

number grows.3

To see whether choice behavior degrades in exactly this

way, Ryan Webb, LoFaro, Louie, and I (Louie et al. 2013;

Webb et al. 2014) developed a series of human and animal

choice experiments in which we searched for anomalies

like the one described above. Perhaps surprisingly, we

found that each of the predictions our models made accu-

rately described an anomalous choice behavior found in

humans and in monkeys that defied traditional economic

analysis. This is a key point: Our model predicts that the

predictions of traditional economic theory are wrong

because traditional theory neglects the cost of representa-

tion. In any real system, where neurons are costly and

capacity is limited, choice accuracy will have to trade

off representational costs against benefits. What this sug-

gests is that the gap between the whys of the economists

and the whats of the psychologists really reflects a mis-

specification of the costs of neural computation.

CONCLUSION

Neuroeconomic models of human and animal deci-

sion-making emerged as an effort to reconcile economic

theory and psychological observation. Economists had
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Figure 7. Excitatory and inhibitory contributions to population firing rates in area LIP. (Left) Observed data from an LIP population.
(Right) The prediction of the network model that achieves divisive normalization at equilibrium.

3Louie and I showed that this is true for essentially any noise regime.
That is a somewhat counterintuitive fact covered in Louie et al. (2011).
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long argued that choice was a process of optimization and

had developed lovely theories of how that optimization

should work. But what the economists had failed to take

into account was the fact that neural computation is costly

and neural representational capacity is limited. Psychol-

ogists had correctly noted the failures of traditional eco-

nomic theory but offered little deep explanation for why

these anomalies arise. What has become clear in the last

decade is that models that incorporate real constraints

faced by the nervous system can close much of this

gap. These models recognize that perfect choice behavior

requires an infinitely costly nervous system. Real animals

operating under evolutionary pressure accept errors

whenever correcting those errors would be more costly

(in terms of a larger or more precise nervous system) than

beneficial. The study of human decision-making stands

poised to use neuroscience to develop a next-level under-

standing of the whys, whats, and hows of human behavior.

REFERENCES

Allais M. 1953. Behavior of the rational man before risk—Crit-
icism of American school postulates and axioms. Economet-
rica 21: 503–546.

Barlow HB. 1961. Possible principles underlying the transfor-
mation of sensory messages. In Sensory communication (ed.
Rosenblith WA), MIT Press, Cambridge, MA.

Carandini M, Heeger DJ. 2012. Normalization as a canonical
neural computation. Nat Rev Neurosci 13: 51–62.

Glimcher PW. 2013. Value-based decision-making. In Neuro-
economics: Decision-making and the brain (ed. Glimcher
PW, Fehr E), Academic, New York.

Heeger DJ. 1992. Normalization of cell responses in cat striate
cortex. Vis Neurosci 9: 181–197.

Heeger DJ, Simoncelli EP, Movshon JA. 1996. Computational
models of cortical visual processing. Proc Natl Acad Sci 93:
623–627.

Kahneman D, Tversky A. 1979. Prospect theory—Analysis of
decision under risk. Econometrica 47: 263–291.

LoFaro T, Louie KL, Webb R, Glimcher PW. 2014. The tempo-
ral dynamics of cortical normalization models in decision-
making tasks. Lett Biomath 1: 209–220.

Louie K, Grattan LE, Glimcher PW. 2011. Reward value-based
gain control: Divisive normalization in parietal cortex. J Neu-
rosci 31: 10627–10639.

Louie K, Khaw MW, Glimcher PW. 2013. Normalization is a
general neural mechanism for context-dependent decision
making. Proc Natl Acad Sci 110: 6139–6144.

Louie K, LoFaro T, Webb R, Glimcher PW. 2014.
Dynamic divisive normalization predicts time-varying value
coding in decision-related circuits. J Neurosci 34: 16046–
16047.

Neumann J, Morgenstern O. 1944. Theory of games and eco-
nomic behavior. Princeton University Press, Princeton, NJ.

Olshausen BA, Field DJ. 1997. Sparse coding with an overcom-
plete basis set: A strategy employed by V1? Vis Res 37:
3311–3325.

Platt ML, Glimcher PW. 1999. Neural correlates of decision
variables in parietal cortex. Nature 400: 233–238.

Ratliff F, Hartline HK. 1959. The responses of Limulus optic
nerve fibers to patterns of illumination on the receptor mosaic.
J Gen Physiol 42: 1241–1255.

Reynolds JH, Heeger DJ. 2009. The normalization model of
attention. Neuron 61: 168–185.

Samuelson PA. 1947. Foundations of economic analysis. Har-
vard University Press, Cambridge, MA.

Schwartz O, Simoncelli EP. 2001. Natural signal statistics and
sensory gain control. Nat Neurosci 4: 819–825.

Shannon CE, Weaver W. 1949. The mathematical theory
of communication. University of Illinois Press, Urbana,
IL.

Simon HA. 1955. A behavioral model of rational choice. Q J
Econ 69: 99–118.

Simoncelli EP. 2003. Vision and the statistics of the visual en-
vironment. Curr Opin Neurobiol 13: 144–149.

Wainwright MJ, Schwartz O, Simoncelli EP. 2002. Natural im-
age statistics and divisive normalization: Modeling nonline-
arity and adaptation in cortical neurons. In Probabilistic
models of the brain: Perception and neural function (ed.
Rao RPN, Olshausen BA, Lewicki MS), pp. 203–222. MIT
Press, Cambridge, MA.

Webb R, Glimcher PW, Louie KL. 2014. Rationalizing context-
dependent preferences: Divisive normalization and neurobi-
ological constraints on choice. SSRN Electronic Library
2462895.

u1

u1

u2

u2

u3

u3

As u3 increases, the distance between u1 and u2 shrinks

A

B

Figure 8. Firing rate distributions for normalization models
show a sensitivity to the value of irrelevant options. See text.

P. GLIMCHER8

 Cold Spring Harbor Laboratory Press on February 2, 2015 - Published by symposium.cshlp.orgDownloaded from 

http://symposium.cshlp.org/
http://www.cshlpress.com


 10.1101/sqb.2014.79.024778Access the most recent version at doi:
 published online January 30, 2015Cold Spring Harb Symp Quant Biol

 
Paul Glimcher
 
Normalization
Decision-Making: From Expected Utility to Divisive 
Understanding the Hows and Whys of
 
 

P<P
volume.
Published online January 30, 2015 in advance of the print

service
Email alerting

 here
clicksign up in the box at the top right corner of the article or

Receive free email alerts when new articles cite this article -

of initial publication. 
Advance online articles must include the digital object identifier (DOI) and date 
Advance online articles have not yet appeared in the print volume. Citations to

 http://symposium.cshlp.org/subscriptions
 go to: Cold Spring Harbor Symposia on Quantitative BiologyTo subscribe to 

Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved

 Cold Spring Harbor Laboratory Press on February 2, 2015 - Published by symposium.cshlp.orgDownloaded from 

http://symposium.cshlp.org/lookup/doi/10.1101/sqb.2014.79.024778
http://symposium.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=sqb;sqb.2014.79.024778v1&return_type=article&return_url=http://symposium.cshlp.org/content/early/2015/01/29/sqb.2014.79.024778.full.pdf?ijkey=vxZnObyIzqzzoNf&keytype=finite
http://symposium.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=sqb;sqb.2014.79.024778v1&return_type=article&return_url=http://symposium.cshlp.org/content/early/2015/01/29/sqb.2014.79.024778.full.pdf?ijkey=vxZnObyIzqzzoNf&keytype=finite
http://symposium.cshlp.org/subscriptions
http://symposium.cshlp.org/
http://www.cshlpress.com

