
Ann. N.Y. Acad. Sci. ISSN 0077-8923

ANNALS OF THE NEW YORK ACADEMY OF SCIENCES
Issue: The Year in Cognitive Neuroscience

Efficient coding and the neural representation of value

Kenway Louie1 and Paul W. Glimcher1,2,3

1Center for Neural Science, 2Department of Psychology, 3Department of Economics, New York University, New York, New York

Address for correspondence: Kenway Louie, Center for Neural Science, New York University, 4 Washington Place, Room 809,
New York, NY 10003. klouie@cns.nyu.edu

To survive in a dynamic environment, an organism must be able to effectively learn, store, and recall the expected
benefits and costs of potential actions. The nature of the valuation and decision processes is thus of fundamental
interest to researchers at the intersection of psychology, neuroscience, and economics. Although normative theories
of choice have outlined the theoretical structure of these valuations, recent experiments have begun to reveal how
value is instantiated in the activity of neurons and neural circuits. Here, we review the various forms of value coding
that have been observed in different brain systems and examine the implications of these value representations for
both neural circuits and behavior. In particular, we focus on emerging evidence that value coding in a number of
brain areas is context dependent, varying as a function of both the current choice set and previously experienced
values. Similar contextual modulation occurs widely in the sensory system, and efficient coding principles derived
in the sensory domain suggest a new framework for understanding the neural coding of value.
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Introduction

The activity in many brain regions is sensitive to re-
ward, a modulation that can reflect not just value but
processes such as sensation, motivation, and atten-
tion. Parallel work on humans and animals has be-
gun to elucidate the different functional roles of ar-
eas representing value itself: responses linked to the
values of specific actions in decision-related areas,
activity that represents and perhaps stores action-
independent value in the frontal cortices, and value-
related teaching signals in subcortical regions that
guide learning. These investigations provide details
about the mechanism of value representation, and
growing evidence is revealing subtle but important
consequences resulting from these implementations
of value representation in neural activity. For exam-
ple, although normative models of choice assume
that the values of options or goods are evaluated
in an absolute manner, independent of other avail-
able alternatives, the neural representation of value
has been shown to depend significantly on choice
context. This finding not only carries implications
for behavior but also suggests that the neural encod-

ing of value reflects key features of efficient encoding
systems first identified in the visual and auditory sys-
tems. In this review, we consider the different forms
of context-dependent value representation observed
in the brain and compare them to well-known con-
textual effects in sensory processing.

We begin by reviewing the different forms of value
representation observed in the brain, with a focus
on results from primate electrophysiology. We then
describe the ways that neural value coding depends
on both spatial and temporal value context. In the
following section, we describe the different ways
that spatial and temporal context affect sensory pro-
cessing. Finally, we briefly review the tenets of the
efficient coding hypothesis as it applies to sensory
systems and address how these context-dependent
value representations can be viewed within the effi-
cient coding hypothesis.

Value-related activity in the brain

To efficiently interact with its environment, an or-
ganism must be able to predict the consequences of
actions and choose the best of possible alternative
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options. Value, as a quantification of the expected
rewards or costs associated with any choice or ac-
tion, is thus critical to the decision-making pro-
cess. This fundamental relationship between value
and choice is expressed explicitly in economic the-
ory, which defines the expected utility of an object
only from an analysis of the choices a decision-
maker makes between that object and other op-
tions.1,2 In this regard, economic theories respect
the fact that, for example, a given chooser might
view 10 apples as less than 10 times as good as one
apple if that is what the subject’s choices reveal.
In neuroscientific studies of reward and decision
making, however, the experimental parameter ma-
nipulated is typically an objective quantity such as
the number of apples or the amount of liquid re-
ward delivered to the animal, and it is this objective
quantity that neurobiologists have typically hypoth-
esized is encoded in the nervous system. Motivated
by economic models of choice, a growing number
of neuroscientific studies have demonstrated that it
is in fact the subjective rather than objective value
of rewards that best correlates with reward-related
activity in the brain (for more information, see
Refs. 3 and 5).

For an organism facing an uncertain and dy-
namic world, however, optimal behavior requires
more than just using value to guide decision mak-
ing: values must be learned through interaction with
the environment, and these values must be stored
and updated over time for subsequent use. Consis-
tent with this idea, evidence from neurophysiologi-
cal studies indicate that value-related neural activity
is observed widely throughout the brain and there is
growing evidence that activity in these value-related
areas can be broadly grouped into three categories
according to function: action selection, value stor-
age, and learning. In line with the idea that value
is an intrinsic part of the decision process, many of
the brain systems involved in action selection and
decision making are modulated by value. There is
accumulating evidence that frontal regions, notably
the ventromedial prefrontal and orbitofrontal cor-
tices, encode the value of options independent of the
actions required to achieve them; such a represen-
tation is consistent with these areas being involved
in the storage and recall of values. Finally, neural
circuits that respond near the time of reward receipt
are systematically modulated by value in a manner
consistent with a role in learning. We briefly review

each of these in turn, with a focus on the primate
electrophysiology literature.

Multiple stages of the action-selection process are
significantly modulated by reward, with neural ac-
tivity covarying with the value of actions in these
stages. For example, in the primate visuo-saccadic
system, value-coding activity is observed at both
cortical and subcortical levels of processing. Early
in the sensorimotor processing pathway, the activ-
ity of neurons in the posterior parietal cortex varies
monotonically with the subjective value of the re-
ward associated with a saccade.6–10 This influence of
value extends through the oculomotor pathway to
brain areas more closely tied to saccade execution,
with reward expectation modulating activity in the
frontal eye fields,11 supplementary eye fields,12 and
the superior colliculus.13,14 Reward-related activity
is also readily observed in the basal ganglia, where
the activity of striatal neurons reflects the expecta-
tion of reward.15–17 When reinforcement learning
models are fit to behavioral data in dynamic tasks,
many striatal neurons encode the derived trial-by-
trial action values.18,19 In these saccade-related brain
areas, neurons retain their spatial selectivity, and the
influence of value acts primarily like a modulation
of gain. Although most of the accumulated evidence
pertains to the oculomotor system, similar valuation
signals are likely to exist in other effector systems,
such as that controlling reach.18,20,21

Although decision making can be viewed as
purely a process of action selection, values can
also be associated with choice options in a man-
ner independent of motor action. Such a “goods-
based” system provides flexibility, allowing an an-
imal to enact a decision independent of simple
stimulus–response associations. A recent experi-
ment by Padoa-Schioppa and Assad suggests that
neurons in area 13 of the primate orbitofrontal cor-
tex (OFC) can encode exactly this kind of goods-
based value.22 Employing a binary choice task
that required animals to choose between varying
amounts of two different juice types, the authors de-
termined the relative value of the two juice rewards.
In contrast to the decision- and motor-related areas
mentioned previously, they found that OFC activity
was generally insensitive to the spatial configuration
of stimuli or the required motor action. However,
many of these neurons showed one or more of three
particular responses linked to the choice options:
offer type responses, which varied with the value
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(or amount) of one of the offered options; chosen
value responses, which varied with the value of the
selected option; and taste responses, which varied
in a binary fashion, depending on which juice type
was selected. Of these different factors, chosen value
most closely resembles an economic, goods-based
notion of value; it is a subjective quantity, depen-
dent on an individual animal’s valuation of the two
juices, and represents value independent of the iden-
tity of the particular chosen option.

Unlike the action-value representations appear-
ing in effector-specific circuits, value signals in OFC
appear to be present throughout the time course of
the choice process, both before and after the receipt
of reward, suggesting that they may inform rather
than directly participate in action selection. How-
ever, such value coding may play a role in economic
decision making independent of motor response.23

This demonstration of a goods-based, subjective
value representation aligns with previous neuro-
physiological reports of OFC responses to reward
expectation.24–27 In human neuroimaging studies,
a growing number of studies have reported activity
related to reward expectation and subjective value
in the ventromedial prefrontal cortex (vmPFC; see
Kable and Glimcher4 and Rangel and Hare5 for re-
cent reviews).4,5 Thus, it appears that frontal cir-
cuits in humans convey a unitary representation of
action-independent reward value as well. Similar
action-independent value representations may oc-
cur in related brain regions, as both the OFC and the
vmPFC are heavily interconnected with structures
implicated in reward processing, such as the cingu-
late cortex, the amygdala, and the hippocampus;28

many neurons in the amygdala, for example, encode
both the positive and negative values of conditioned
stimuli or states.29,30

Other brain areas show reward-related activity
that is more consistent with a role in learning rather
than in the expression or storage of value. Such a
system is critical because animals must, in the real
world, update the value of choice options through
continuing experience. Neurons in the midbrain
dopaminergic system are now known to encode a
teaching signal well-suited to updating stored value
estimates. These neurons influence a large number
of brain structures involved in motivation and goal-
directed behavior, with projections targeting the nu-
cleus accumbens and frontal cortex via the mesolim-
bic and mesocortical pathways and the striatum

via the nigrostriatal pathway. Multiple lines of ev-
idence have long suggested that dopamine is in-
volved in the processing of reward: drugs of abuse,
such as cocaine, nicotine, and amphetamines, indi-
rectly or directly increase the action of dopamine,
and dopaminergic pathways are among the most ef-
fective locations for the placement of intracranial
electrical self-stimulation electrodes.31,32

Two developments in the 1990s clarified the role
of dopamine in reward processing in a fundamen-
tal manner. First, in a series of electrophysiolog-
ical studies of primates, Schultz and colleagues
demonstrated that dopamine neurons show a pha-
sic response to appetitive rewards, such as a small
piece of apple or quantity of juice.33–35 Significantly,
when visual stimuli are associated with rewards
through a classical conditioning paradigm, the pha-
sic dopaminergic response to reward delivery di-
minishes; instead, dopamine neurons respond at the
presentation of the conditioned, predictive stimu-
lus. This transition of neural response from the re-
ward delivery to the conditioned stimulus mirrors
the transfer of the animals’ behavioral reactions.
Importantly, these responses also carry informa-
tion about the timing of expected rewards; when
an expected reward delivery is omitted, dopaminer-
gic neurons show a marked suppression of activity
at the time when reward would have occurred.36

In the second of these critical advances, Montague
and colleagues used computational learning theory
to provide a theoretical framework for understand-
ing these dopaminergic neuronal responses37,38 (for
a more complete review of these advances, see Glim-
cher39). Learning based on prediction errors, in
which an organism makes a prediction and learns
contingent on errors in that prediction, is a pro-
cess central to adaptation and learning rules in
both computer science and psychology.40,41 Build-
ing on earlier studies of octopaminergic neurons
in the honeybee brain, these authors suggested that
mesencephalic dopamine neurons encode an error
prediction that provides a dynamic signal of the
difference between the expected amount of reward
and the actual reward. Montague and colleagues
proposed that this dopaminergic reward prediction
error (RPE) signal drives learning via a temporal
difference (TD) algorithm, a type of method in re-
inforcement learning first introduced to computer
science by Sutton and Barto.42,43 In TD learning,
the learned value function represents, essentially, the
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(time-discounted) sum of all expected future re-
wards associated with any given set of actions. In
each iterative learning experience, this value func-
tion is updated by a quantity determined by the RPE
and the learning rate (a model parameter that adjusts
the strength with which unexpected rewards update
the estimates of future expected rewards). Exam-
ination of the primate electrophysiological results
in the context of reinforcement learning suggested
that dopaminergic responses display the fundamen-
tal quantitative and qualitative characteristics of this
theoretical RPE signal.44–46 Thus, unlike the pari-
etal or orbitofrontal responses described previously,
dopaminergic responses are related to value but do
not appear to encode value itself, but rather a teach-
ing signal used to update value representations else-
where in the brain.

To review, we have outlined a broad framework
loosely categorizing value-related neural activity
into action selection, value representation, and value
updating. This conceptual organization provides a
useful heuristic with which to systematically con-
sider the various functional roles of value-related
activity and contextual modulation that we discuss
later. However, it is important to note that this
heuristic can serve only as a very general guide,
and some experimental findings do not fit neatly
within this simple framework. One important is-
sue that we have oversimplified concerns the rela-
tive roles of action- and goods-based selection and
their integration in decision making. One possibil-
ity that has been raised by a number of authors
is that all decisions are implemented at the stage
of action selection, when information about op-
tion value (also called goods or stimulus value) is
combined with information about motor costs into
action values to guide choice.5 Alternatively, it has
been suggested that many or all decisions may be
made in an abstract goods space independent of
motor implementation and occur solely in brain
regions such as OFC.23 Finally, goods-based and
action-based representations may coexist and de-
cisions might be accomplished in either framework
depending on the nature of any given task.47 A better
understanding of the precise mechanism of valua-
tion and decision making in these kinds of choices
will be critical for predicting the effects of the dif-
ferent kinds of contextual modulation observed in
these areas and discussed later.

Another important area of simplification con-
cerns the fact that many of these brain regions may

play a role in other functional processes, and these
alternative signals may confound our interpretation
of the role of these areas in valuation and decision
making. For example, value itself often co-varies
with other important behavioral quantities, such as
motivation and attention.48 This is a particularly
relevant issue in the parietal cortex, where lateral
intraparietal area (LIP) neurons are known to be
modulated by visual salience and the allocation of
spatial attention.49,50 Such findings have led some
to suggest that activity in the parietal cortex reflects
the allocation of spatial attention and plays little
or no direct role in decision making.51 Given the
tight behavioral correlation between attention and
decisions about eye and arm movements, we take a
middle ground in this review, suggesting that both
quantities are represented. Indeed, the observation
that attention and decision are for the most part
behaviorally inseparable has led us to suggest else-
where that it is unlikely that these two quantities are
fully orthogonalized in the nervous system.

Finally, we note that some brain areas may be
involved in more than one of these stages in the
processing of value information. For example, in
an oculomotor foraging task, some neurons in the
striatum are correlated with the value of a specific
directional saccade (action value), but others are in-
stead correlated with the value of the saccade that
is chosen, regardless of direction.18,19 These chosen
value neurons cannot guide selection: their activity
is contingent on the selected action, and they are
most active immediately before or persistently af-
ter reward delivery. However, because such activity
represents the expected outcome of any action, it
may play a role in updating stored representations
of value (for example, the difference between chosen
value and obtained reward can be used as a teaching
signal).

Contextual modulation in value
representation

In normative models of decision making, such as
those in neoclassical economics, a fundamental as-
sumption is that options are evaluated in an abso-
lute manner, and that the values assigned to goods
or actions are stable, stationary quantities.52,53 Un-
der this kind of value representation, a decision-
maker will have a complete preference order over
all possible choice options, and will always choose
the highest valued option from a set of possible
alternatives. However, growing behavioral evidence
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indicates that choice behavior in both animals and
humans is often context dependent, for example,
varying depending on the composition of the choice
set or exposure to previous priming situations.
Choice behavior is also to a certain degree stochastic,
varying somewhat randomly from moment to mo-
ment and trial to trial. These behavioral data suggest
that choice processes rely on a noisy and compar-
ative form of evaluation, driven by a relative rep-
resentation of value dependent on both spatial and
temporal context. Below, we review the emerging
neurophysiological evidence for context-dependent
effects on the activity of value coding areas.

Spatial context and value coding
Many computational theories of action selection
and decision making require a representation of the
value of individual actions, from which a single ac-
tion is then selected. However, the precise relation-
ship between value and neural firing rates is not
known. Although the concept of utility in economic
models of choice is unattached to a particular unit
of measure (that is, utility is ordinal not cardinal and
unique), the neural representation of value is instan-
tiated via actual spiking rates, which are necessarily
fully cardinal unique values. As a result, many differ-
ent possible neural representations of value will be
consistent with a given set of choice data (and a given
ordinal ranking); for example, systems whose value
representations are linear transforms of one another
(e.g., V 1 = 10, V 2 = 20, and V 3 = 30 spikes/sec
vs. V 1 = 50, V 2 = 100, and V 3 = 150 spikes/sec)
would produce identical behavioral choice prefer-
ences. Thus, behaviorally generated models of value
only provide limited constraints on how neural sys-
tems represent values.

Many economic models thus do not distinguish
between representations coding absolute value,
where action values are modulated strictly by the
value of the target option, and those coding relative
value, in which action values are normalized to the
value of all available options. In the animal decision-
making literature, however, there is a strong histor-
ical precedent for the idea that value is represented
in a fractional manner:

FV1 = V1

V1 + V2
,

where FV 1 is the fractional value of option 1, and
V 1 and V 2 are the values of the two options in
the choice set. In studies of foraging behavior in

pigeons, Herrnstein established that the relative re-
sponse probability for a given option was intricately
tied to the relative rate of reinforcement.54 This be-
came the basis of the influential matching law, which
proposes that the fraction of choices an animal al-
locates to a given option will match the fraction of
rewards earned from that option. Under this pro-
posal, the primary determinant of choice behavior
is the relative (fractional) value of rewards.

Does the brain represent action values in absolute
terms, independent of the other available options,
or in relative terms? In visuomotor areas like the
parietal cortex, neurons display visual and motor se-
lectivity that coincides in space, suggesting that they
link sensory and motor information during decision
making. Thus, a given neuron in LIP represents a
specific action—a saccadic eye movement to its re-
sponse field (RF). In different paradigms, decision-
related LIP activity is modulated by a number of
behaviorally relevant factors that affect the choice
of saccade, including accumulated motion evidence,
target color, temporal information, and probabilis-
tic cues.55–58 One unifying hypothesis for these var-
ious correlates is that they control LIP activity by
influencing the subjective value of the associated
saccades. The representation of the value of a saccade
(action value) is seen as a modulation of the action-
selective activity, a finding now demonstrated in
a number of studies.6–8,10,59 Growing experimental
evidence suggests that these value signals reflect the
relative rather than absolute value of a given sac-
cade. LIP activity correlates with the value of the
response field target when that quantity is varied
alone. However, if the value of both targets in a two-
target task are varied, LIP responses depend on both
the response field target value (V in) and the extra-
response field target value (V out), consistent with
a fractional, relative reward representation.7,59 For
example, Rorie et al. recorded LIP neurons while
monkeys performed a classic perceptual discrim-
ination task, which requires animals to judge the
motion direction of a noisy motion-dot stimulus.59

LIP neurons display characteristic decision-related
activity in this paradigm,55,60 with firing rate in-
creases paralleling the accumulating sensory evi-
dence for a given saccade. When Rorie et al. manipu-
lated the values associated with the two choices, they
found that LIP activity reflected the absolute value
of the RF target, consistent with previous studies.
More significantly, they found that LIP neurons also
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reflected the relative value of the RF target, with
higher firing rates for a given RF target reward if
the other, extra-RF target was associated with a low-
value reward.

How is a relative value representation constructed
in decision circuits? If relative value representation
is considered in terms of spatial context, activity
driven by the response field target value is sup-
pressed by the value of other targets situated out-
side the RF. In sensory cortices, stimuli outside the
classical receptive field can nonetheless significantly
modulate neuronal activity driven by receptive field
stimulation. Many of these extra-classical effects are
characterized by models in which response is speci-
fied by the sensory properties of the stimulus inside
the receptive field, divided by the weighted sum of
the sensory properties of stimuli both outside and
inside the receptive field.61 For example, the output
of a cell in the visual cortex can be described as

Ri ∝ Ai

!2 +
∑

j
A j

,

where Ai is the driving input of the cell in question,
the summation in the denominator is taken over in-
puts Aj to a large population of similar neurons, and
!2 is an empirical semisaturation constant. This di-
visive normalization mechanism is widely found in
the visual cortex and explains nonlinear phenom-
ena in the striate and extra-striate cortex62–65 as well
as object-driven normalization in the ventral visual
stream.66 Furthermore, divisive normalization pro-
duces an efficient coding of natural signals67,68 and
may underlie the attentional modulation of neu-
ral responses,69 suggesting that it may be a canoni-
cal computational algorithm in the cortex.70 If the
parietal cortex employs an analogous functional ar-
chitecture, then a similar form of divisive normal-
ization may underlie the representation of saccade
value in the LIP.

In a recent study, we explicitly examined the in-
fluence of alternative option values on LIP activ-
ity.71 To confirm a relative rather than absolute cod-
ing of value, we first quantified LIP responses in a
two-target task, in which the RF target value was
held constant and the extra-RF target value was ex-
plicitly varied. Consistent with other reports,7,59 we
found that the activity of both single neurons and
the population is inversely related to the value of
the alternative target, suggesting that action values

are coded relative to the choice context. To more
precisely quantify the nature of this modulation, we
recorded additional LIP neurons in a three-target
task in which we systematically varied the number
of saccade targets and their values, enabling us to test
the divisive normalization model. Monkeys fixated
a central cue and were presented with either one,
two, or three targets, each of which was associated
with a different magnitude of water reward. After
target presentation, monkeys were subsequently in-
structed to select one of the presented targets: a
medium reward target situated in the RF or either
the small or large reward targets placed outside the
RF, typically in the opposite hemifield. Each trial
consisted of one of seven possible target arrays, pre-
sented randomly and with equal probability (three
single target, three dual target, and one triple tar-
get trial). Each randomized target array provided
a unique combination of value associated with the
target in the RF and values available outside the RF
(Fig. 1A), allowing us to quantify the relationship
between target value (V in) and value context (V out).

We found two primary effects of the value con-
text, defined by the instantaneous choice set, on LIP
responses (Fig. 1B). First, consistent with qualita-
tive reports in two target tasks, activity elicited by
target onset in the RF is modulated by the value of
the alternatives, with larger V out magnitudes lead-
ing to greater suppression. Second, activity when
no RF target is present is suppressed in a context
dependent manner, with larger V out values driv-
ing activity further below baseline activity levels.
Analogous to extra-classical modulation in the early
visual cortex, both of these effects are driven by
the value of targets that themselves do not drive
the recorded neuron. Significantly, when we per-
formed a quantitative model comparison with other
possible relative reward representations including
the fractional value of Herrnstein, V in/(V in+V out),
and a differential value model, V in–V out, contextual
value modulation was clearly best explained by a
divisive normalization-based model:

Ri ∝ Vi + "

!2 +
∑

j
Vj

,

where the activity of a neuron Ri is dependent
on both the value of the target in its RF Vi and
the sum over all available target values Vj (the
empirical parameter " models suppression below
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Figure 1. Spatial context dependence in LIP value coding. (A) Different value conditions in an oculomotor saccade task. Monkeys
were presented with a target array of one, two, or three peripheral targets associated with different reward magnitudes. The value
of the RF target was constant, whereas the value context varied with the number and reward magnitude of extra-RF targets. (B)
Population parietal neuron activity. The value context (extra-RF target value) modulates LIP activity both in the presence and
absence of the target in the RF. (C) Neural coding of value and value context. Increasing the value of the RF target increases LIP
activity (different lines). Increasing the value of extra-RF targets suppresses LIP activity (connected lines). Together, these data
suggest that LIP activity encodes a relative reward representation incorporating both target value and value context. (Adapted from
Louie et al.71)

a baseline rate). Significantly, the implementation
of relative value through divisive normalization sug-
gests a functional linkage to contextual modulation
in sensory systems, which use an analogous normal-
ization algorithm over sensory inputs.

Temporal context and value coding
A fundamental question about the neural repre-
sentation of value is how such coding changes
with behavioral context; in other words, is value
coding relative or absolute? The results described
previously suggest that at least some parietal cir-
cuits involved in decision making reflect a nor-
malization process across the available choice op-
tions, but it is not yet entirely clear how this
parietal circuit fits into the larger network of ar-
eas involved in decision making. A number of
brain regions in addition to the parietal cortex
display decision-related activity during the choice
process, such as the basal ganglia, frontal eye fields,

supplementary eye fields, and superior colliculus. A
remaining open question is whether normalization
is a general aspect of value coding at all stages of ac-
tion selection. We do know, however, that neural ac-
tivity in the monkey dorsal premotor cortex during
reach decisions is modulated by the relative value of
reach targets,72 indicating that value normalization
may be a general phenomenon. Thus, one important
issue is how contextual value coding varies in differ-
ent brain areas performing different value-related
processing. It is reasonable to expect that action
value–based gain control, presumably occurring in
an instantaneous manner when the options are pre-
sented, may be a feature specific to areas involved
in decision making, and that value-sensitive brain
regions subserving other functions—such as value
storage—employ different value coding strategies.

Given the demonstration that orbitofrontal neu-
rons encode a goods-based representation of value,
Padoa-Schioppa and Assad examined whether those
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value representations are dependent on the other
available rewards in a choice situation.73 As in their
original demonstration of value coding by OFC neu-
rons,22 monkeys chose between varying amounts
pairs of juices (A:B, B:C, C:A) that could be ranked
by relative preference order (when offered in equal
amounts, A > B > C). Trials with different pair-
wise reward offers were randomly interleaved. Mon-
keys in this task displayed transitivity, for example,
choosing 1A over 1C if they chose 1A over 1B and 1B
over 1C, indicating that the different rewards could
be compared on a common value scale, enabling
the examination and comparison of the different
neural value representations. As before, the authors
found three general types of response, which they
termed offer value (the presented value of a specific
reward type), chosen value (the value of the selected
option in a given trial, regardless of type), and taste
(received reward type). When the value-specific re-
sponses (offer and choice value) were examined,
they did not depend on the specific pair of rewards
offered: for example, the activity of a neuron en-
coding offer value A had the same linear relation-
ship between firing rate and offered amount of A
whether the other available reward was B or C. The
authors concluded that OFC responses are invariant
to the menu of choice options, and do not reflect the
relative preference ranking of the possible rewards.

This menu invariance appears at first glance to
contradict earlier results by Tremblay and Schultz,
describing relative reward preference in OFC neu-
rons.25 In that study, monkeys performed a spa-
tial delayed-response task in which they were pre-
sented with a stimulus that predicted which of two
possible rewards would be delivered at the end of
the trial; a single trial consisted of one stimulus
that was associated with a specific liquid or food
reward. The task was conducted in blocks of tri-
als, with two different stimuli and their respective
associated rewards employed in a given block. Of
the OFC neurons active in this task, many showed
reward-related responses, responding in a phasic
manner to the instruction stimulus or reward deliv-
ery and in a sustained activation preceding reward.
These responses often showed greater activation for
one kind of reward over others but did not differ-
entiate between left and right instructions or dif-
ferent cues indicating the same reward, suggesting
that they reflected information about the predicted
reward.

Notably, in contrast to the Padoa-Schioppa and
Assad findings, OFC neurons in the Tremblay and
Schultz task encoded a value representation that was
relative rather than absolute. In separate choice tri-
als, the authors established the relative behavioral
preferences between each of three different reward
pairs (A:B, B:C, and C:A). The majority (40 of 65) of
reward sensitive neurons showed reward responses
that were dependent on the block context, with dif-
ferent activation for a given predicted reward con-
tingent on which other reward was available in the
block. For example, in a monkey that preferred re-
ward A to reward B and reward B to reward C, this
kind of response would show low activation in a
B trial when both A and B were offered in a block
but high activation in a B trial when B and C were
paired. Note that these differential responses oc-
curred in trials with identical visual stimuli and re-
wards; only the larger context of which reward was
available in other trials varied. These results sug-
gest that OFC neurons encode a subjective, context-
dependent value driven by relative preference rather
than absolute, unchanging properties of the reward
itself.

How can menu invariance and relative reward
preferences both occur in orbitofrontal neurons?
A distinct difference between the two experiments
is that the different pairwise combinations of re-
wards were presented randomly interleaved in the
study reporting menu invariance, whereas the study
showing relative reward preference presented re-
ward pairs in blocks. If the orbitofrontal value rep-
resentation adapts to the recent history of received
rewards, relative reward coding over time would ap-
pear as differential adaptation occurs to the rewards
in different blocks of contiguous trials. When the
choice context changes rapidly with randomly inter-
leaved pairwise rewards, the local distribution will
appear almost identical to the global distribution
if the integration time for adaptation is sufficiently
larger, and value representations will appear abso-
lute, or invariant.

Additional work by Padoa-Schioppa indicates
that the results described in the two preceding stud-
ies can indeed be reconciled by accounting for the
temporal dynamics of how different reward possi-
bilities were presented.74 This study consisted pri-
marily of a reanalysis of two large datasets presented
previously, including data from the study demon-
strating menu invariance. In these experiments,
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animals chose between different amounts of two
(or in some cases, three) types of juice rewards. The
distribution of possible reward sizes for a given juice
type were fixed for each neuron, but varied across
neurons. For example, one neuron may have been
recorded with B rewards ranging from 0 to 2 (in
equivalent units of juice A, determined by behav-
ior), whereas a separate neuron was recorded with
B rewards ranging from 0 to 10. To examine value-
based adaptation, the authors examined whether,
across the population of OFC neurons, firing rates
depended on the value range (an example of local
value distribution).

One straightforward model of range adaptation
is that the firing rate range is adjusted to match
the range of possible values. Under this model, the
slope of the relationship between firing rate and
value would decrease as the possible value range in-
creases, and the high end of the value range should
be represented by the same firing rate in different
value-range conditions (Fig. 2, top). When the mean
population firing rates were examined in this man-
ner, segregated by value range, OFC activity showed
a clear adaptation to the locally experienced range
of values, for both offer value and chosen value re-
sponses (Fig. 2, bottom). Consistent results were
observed when individual neurons were recorded
under both low-range and high-range conditions,
indicating that range adaptation is not an artifact of
averaging across the population. Thus, value repre-
sentation in OFC is independent of the immediate
context (menu invariant) but dependent on the lo-
cal temporal context (range adapting), in contrast
to the trial-by-trial normalization observed in areas
representing action value.

Although this temporal adaptation can be framed
in terms of the range of available values, there are
many characteristics that describe the local tempo-
ral distribution; for example, in the study described
previously, the maximum, mean, and standard de-
viation of the value distribution varied along with
the range. In a recent experiment, Kobayashi et al.
examined how orbitofrontal neurons adapt their fir-
ing rates to reward distributions with different stan-
dard deviations but identical means.75 When indi-
vidual neurons were exposed to three possible liquid
rewards with either a narrow distribution (low stan-
dard deviation) or a wide distribution (high stan-
dard deviation) of volumes, approximately a quar-
ter of the neurons displayed adaptive coding, with

Figure 2. Temporal context dependence in OFC value coding.
Top: Simple model of range adaptation in value coding neu-
rons. The key assumption is that the range of neural activity
is constant across different behavioral value conditions. Bot-
tom: Range adaptation in orbitofrontal neuron activity. The
two panels show average OFC activity in two different types of
value-coding neurons, color-coded by the range of experienced
values (plotted as normalized unit value). Population OFC ac-
tivity adapts to the range of possible values, indicating that such
activity is sensitive to the temporal value context. (Adapted from
Padoa-Schioppa.74)

steeper response slopes to the narrow range of re-
wards, an effect that was significant in the popula-
tion response. This adaptive coding is of particular
interest because it allows the full dynamic range
of neural responses to be employed in represent-
ing both the narrow and wide distributions. In the
light of these effects of value range and standard
deviation, the results of Tremblay and Schultz can
probably best be interpreted as an adaptation of or-
bitofrontal firing rates to the mean reward values
available in different trial blocks. Importantly, this
finding is compatible with the divisive normaliza-
tion algorithm described previously and observed
throughout the cortex, with normalization occur-
ring across time rather than space. These results
reinforce the idea that value coding can be adapted
to multiple aspects of the (temporally) local proba-
bility distribution of values, though the exact pa-
rameters of the value distribution that influence
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adaptation requires further study (e.g., by explor-
ing the effects of higher-order moments like skew).

This kind of adaptive response to the local value
statistics may generalize to regions other than the
cortex. In a recent study of the dopamine system,
widely believed to carry an error prediction signal
for updating value representations, Tobler et al. ex-
amined how recent rewards affect the activity of
midbrain dopamine neurons.76 Monkeys were pre-
sented with three different conditioned stimuli, each
of which predicted one of two possible rewards that
occurred with equal probability. Consistent with
coding the difference between outcome and the re-
ward predicted by the cue, dopaminergic activity at
the time of reward receipt always increased with the
larger reward and decreased with the smaller reward.
However, rather than a strict prediction error rep-
resenting the absolute difference between predicted
and received reward, dopamine responses adapted
such that better rewards always elicited the same
increase in activity regardless of the absolute pre-
diction error. This again represents a form of gain
control where the sensitivity of dopaminergic re-
sponses is adjusted to the range of possible predic-
tion errors.

Functional implications of contextual coding
The results reviewed previously suggest that contex-
tual modulation plays an important role in deter-
mining the neural coding of value in multiple brain
circuits. Although research is just beginning to doc-
ument such effects, it appears that the nature and
extent of contextual influence in a given brain area
may be closely tied to its functional role in valu-
ation and decision making. Consistent with a role
in storing value information independent of action
selection, OFC value coding adapts to the temporal
context but appears independent of spatial context.
In contrast, consistent with a role in action selec-
tion, LIP neurons are strongly influenced by the
spatial context of the available choice alternatives.
One important open question is how these differ-
ent forms of contextual modulation are combined
in the decision process. For example, the role of the
temporal context in decision circuits like the pari-
etal cortex remains unknown; action selection areas
may inherit temporally adapted value signals from
the frontal cortex, receive value information from
nonadapting brain areas and encode value indepen-
dent of the temporal context, or apply a different

temporal weighting function to such nonadapted
value signals. Future experimental work will be nec-
essary to fully explore the nature of these different
spatial and temporal context effects.

One important and largely unexplored question
is the functional consequence of contextual value
coding. According to normative, rational theories of
choice—such as those in economics—decisions be-
tween any pair of options should be independent of
the context in which the choice is made.53,77 For ex-
ample, the relative preference between any two op-
tions should be independent of the presence or value
of other alternatives, a property known as indepen-
dence from irrelevant alternatives.52 However, a large
body of behavioral evidence indicates that both an-
imal and human choosers are sensitive to both spa-
tial and temporal forms of context. In trinary choice
studies, adding a third low-valued option changes
the relative preference between two high-valued op-
tions in species ranging from insects to birds to hu-
mans.78–81 Experiments have documented a num-
ber of such phenomena in humans, which rely on
the alternatives differing in two attribute dimen-
sions, with the effect dependent on the relationship
between alternatives in two-dimensional attribute
space. A related effect is evident in the so-called
paradox of choice: despite the rational prediction
that more options increase welfare, choosers facing
larger choice sets are more likely to select the de-
fault option, defer choosing, experience regret, and
exhibit inconsistent choice behavior.82–84

These behavioral context effects suggest that bio-
logical decision making employs some form of com-
parative valuation, but the mechanism underlying
such phenomena remains unknown. One might well
hypothesize that relative value coding provides a
possible link between decision-making circuits and
context-dependent valuation. Contextual modula-
tion, for example normalization in the spatial do-
main, can significantly alter the relative distance be-
tween the mean firing rates that represent different
actions. Consider a chooser selecting from three op-
tions, two high-value target items and a low-valued
distracter item. Under a relative value coding sys-
tem, like that described previously in the parietal
cortex, the mean firing rates representing the values
of each option will be divisively scaled by the total
value of all alternatives. Accordingly, higher-valued
distracters will decrease the distance between the
neural representations coding for the values of the
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target items. Noise, or variability, will critically influ-
ence these representations and the choices they pro-
duce in such systems, driving increasingly stochastic
choice behavior as cardinal representations (neural
firing rates) are affected by context. Importantly,
variability is an inherent feature of spiking neuron
activity: at fixed levels of input, neurons generate ac-
tion potentials in a stochastic manner, which leads
to well-characterized variability in spike counts in
repeated measurements.85–87 Given the increasing
evidence for both spatial and temporal forms of con-
textual modulation in value coding, understanding
the interaction between noisy neural systems, con-
text dependence, and stochastic choice behavior re-
mains a key area of future research.

Contextual modulation in sensory coding

As described previously, there is increasing evidence
that the nature of value representation in the brain
is dependent on both spatial and temporal context.
These responses suggest that the neural mechanisms
of value coding are more complex than the classical,
behavioral concept of value derived from theories of
choice like economics and decision theory. To gain
a better understanding of how and why such con-
textual effects may arise, we turn next to the electro-
physiological study of sensory systems, focusing on
the visual system where there is well-established lit-
erature on the effects of context on both perception
and electrophysiological responses.88 These spatial
and temporal context effects are closely linked to
the statistics of the natural environment, indicating
that sensory circuits are tailored to the signals they
are likely to encounter and that contextual modu-
lation may play an important role in information
processing.

Spatial context in visual coding
At the psychological level, spatial context produces
robust and well-documented effects on perception.
Figure 3A illustrates simultaneous contrast, one of
the simplest and most powerful examples of spa-
tial context. The two smaller squares are colored the
same shade of gray and have the same luminance
(actual amount of light traveling from the object
to the eye), but because of the effect of the sur-
rounding areas the square with the dark surround
imparts a higher level of brightness (perceived lu-
minance). Spatial context can strongly affect the
perception of a wide number of visual features, in-

Figure 3. Spatial and temporal context effects in visual per-
ception. (A) Simultaneous contrast. The two small squares are
an identical shade of gray, but the surrounding spatial contexts
drive a differential perception of brightness. (B) Tilt illusion. The
presence of a spatial context tilted 15 degrees counterclockwise
drives a perceived orientation of the center region that is tilted
clockwise from the true vertical orientation. (C) Tilt after-effect.
To induce this effect, fixate the adaptation stimulus for 30 sec
and then shift fixation to the test stimulus. As in the tilt illusion,
the presence of the temporal context (counterclockwise adapta-
tion stimulus) induces a perceived orientation that is repulsed
from the context (shifted clockwise).

cluding brightness, motion, orientation, and object
recognition, and may underlie high-level processes
like perceptual filling in, figure-ground segregation,
and contour detection.89 Figure 3B shows the tilt
illusion, which represents a spatial contextual effect
on orientation perception. Here, the surrounding
bars oriented 15◦ counterclockwise away from ver-
tical drives the perceived orientation of the center
patch of vertical bars clockwise relative to the true
vertical orientation.

Do the perceptual effects of context reflect a
contextual modulation of neural responses? Neu-
rons in most parts of the visual system respond
to visual stimuli in a restricted portion of visual
space termed the classical receptive field (cRF), a fea-
ture that applies to neurons from the earliest stage
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of visual processing in the retina up to high-level
visual cortical areas. This area is typically defined
as the portion of the visual field in which a stimu-
lus can elicit spiking activity; by definition, stimuli
outside this area do not elicit a spiking response.
However, there is a large body of evidence that neu-
rons are modulated by stimuli falling outside the
boundaries of the classical receptive field, in an area
called the extra-classical receptive field (eRF) or sur-
round. Many neurons show a differential response
to the combination of a stimulus in the cRF and a
stimulus in the surround compared to the cRF stim-
ulus alone, an effect that is typically suppressive but
can include facilitation as well.

Such contextual interactions are widespread in
the visual pathway, and extra-classical effects on
neural responses are observed at multiple levels of
processing, from retina to lateral geniculate nucleus
(LGN) to visual cortical areas, suggesting that con-
textual modulation may be a fundamental feature
of sensory processing. Extra-classical modulation
was reported by Hubel and Wiesel in their intial
pioneering description of the primary visual cor-
tex (V1), in which they found certain cells (which
they called hypercomplex) that were tuned to the
length of a bar stimulus, with firing rate increasing
with length up to a certain magnitude but atten-
uating to longer bars. This end-inhibition is now
known to be one of multiple examples of suppres-
sive modulation driven by stimuli outside the cRF.90

For example, many V1 neurons show selectivity
for the orientation of stimuli within their receptive
fields, with a unimodal tuning curve peaked at the
optimal stimulus orientation. However, these neu-
rons exhibit a strong contextual modulation termed
iso-orientation suppression, in which cRF activity is
most strongly suppressed by surround stimuli of
the same orientation that optimally drives the cRF.
Spatial context effects also affect higher levels of
visual processing, such as the motion-sensitive neu-
rons of the macaque middle temporal area (area
MT). These extrastriate neurons are selective for
the direction and speed of motion stimuli in their
cRF, with unimodal direction tuning curves sim-
ilar to V1 selectivity for orientation. Analogous
to iso-orientation suppression in V1, stimuli in
the surround drive a direction-selective modula-
tion, producing a marked suppression when mo-
tion in the surround is the same as motion in the
center.

Although spatial contextual modulation appears
to be a fundamental feature of visual processing,
the anatomic basis and influence on perception of
such processes is still an area of active investigation.
The mechanisms underlying these spatial modula-
tory effects may be diverse: although lateral inhibi-
tion mediated by intra-area horizontal connections
is the standard explanation for surround suppres-
sion in V1,91 feedback projections from higher cor-
tical areas92 or feedforward inheritance of surround
suppression from the LGN93 may also play a role.
There is also a diversity of surround interactions,
which can occur with either fast or slower dynam-
ics and drive selectivity changes such as changes in
tuning-curve width or shifts in the preferred direc-
tion. However, regardless of the underlying mech-
anism, sensory processing appears to be organized
in a manner in which the neural representation of a
given feature is a function of the spatial context in
which it appears. The ubiquity of center-surround
organization and contextual interactions may be re-
lated to the inherent structure present in the envi-
ronment, as this form of processing is well suited to
efficiently code natural stimuli94 (see section “Effi-
cient coding in sensory systems”). The influence of
space represents an interaction between the neural
representations of different inputs that appear si-
multaneously, and provides a framework to under-
stand how decision areas encode the value-related
activity of multiple choice options, which we explore
later.

Temporal context in visual coding
The environment is dynamic, and one of the crit-
ical problems faced by the sensory system is pro-
cessing a constant stream of changing stimuli. The
effects of spatial context described previously re-
flect the interaction of different stimulus features at
an instant in time, but stimuli also have a temporal
context—the input stimuli in the recent past. The ef-
fect of temporal context is referred to by the general
term adaptation, which describes the response to a
sustained presentation of a stimulus (or stimulus
distribution).

Like spatial contextual modulation, adaptation is
a well-described phenomenon in both the percep-
tion and neurophysiology literature. An everyday
example of adaptation is the ability to see at differ-
ent levels of illumination, which is driven by adap-
tation to ambient illumination in the retina.95 As an
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observer moves from a high to a low illumination en-
vironment, for example carrying a newspaper from
the sunlit outdoors into a darkened room, the per-
ceived brightness of both the dark letters and the
gray background remains stable. This adaptation to
the local luminance allows the visual system to func-
tion over the vast range of possible light levels in the
world despite the limited dynamic range of neural
firing rates.

The visual system also adapts to a number of
higher order visual features beyond simple lumi-
nance, though the link between such effects and
functional benefits are not as obvious as that for
luminance adaptation. There are clear perceptual
adaptation effects to features including contrast (rel-
ative illumination), orientation, motion, spatial fre-
quency, and even complex objects like faces (for a
recent review, see Kohn96). Figure 3C illustrates the
tilt after-effect, a prominent example of orientation
adaptation. Fixating the counterclockwise adapta-
tion stimulus on the left for 30 sec and then shifting
fixation to the target stimulus on the right induces
a perception that the vertically oriented bars oc-
cur tilted clockwise, rotated away from the adapting
orientation (a repulsive shift). Interestingly, the tilt
after-effect provides a temporal counterpart to the
spatial tilt illusion discussed previously; in the tilt
illusion, the target and context occur at the same
time but separated in space, whereas here the stim-
uli occur colocalized in space but separated in time.

At the mechanistic level, visual adaptation pro-
duces a diverse array of changes in the response of
neurons in the visual system. Many of the earli-
est studies on adaptation studied the effects of pre-
senting two different levels of a stimulus feature, a
paradigm that investigates adaptation to the mean
of the stimulus distribution. When V1 neurons are
exposed to different levels of ambient contrast, the
responses shift to encode higher levels of contrast,
indicating a decrease in sensitivity.97 Adaptation to
higher-contrast stimuli induces larger reductions in
sensitivity, maintaining the neuronal dynamic range
close to the average of the recently experienced aver-
age contrast. Similar to spatial iso-orientation sup-
pression, suppression of V1 responses is stronger if
adapted to stimuli in the preferred versus the op-
posite or orthogonal orientation.96 Adaptation to
mean responses suppresses activity in a number of
visual areas, including MT, V4, and the inferotem-
poral cortex.

However, when considering the temporal context,
the average value of a stimulus is only one way of
characterizing the distribution of recent stimuli. A
system that responds to the local context of a dy-
namic environment will be influenced by the shape
of the stimulus distribution if the timescale of inte-
gration is short relative to the timescale of changes.
A number of studies have shown that visual areas
can adapt to higher order statistics of local stimulus
distributions, such as the variation in stimulus fea-
ture. In a study of vertebrate retinal ganglion cells,
Smirnakis et al. presented random stimuli drawn
from distributions with the same mean intensity
but differing variances.98 They found that retinal
neurons adapted their responses to the width of the
intensity distributions, an effect driven by recent
sensory experience. When this temporal modula-
tion is examined in the form of a linear kernel,
which shows the average effect of a stimulus as a
function of time from presentation, there is a clear
temporally weighted dependency on recent inten-
sity. Similar adaptations to stimulus variance have
been demonstrated in other visual areas, such as
LGN99 and V1,100 as well as in other modalities in-
cluding somatosensation in rats101 and audition in
songbirds.102 As in spatial contextual modulation,
the effects of adaptation are likely mediated by het-
erogenous mechanisms that differ by both locale
of neuronal adaptation and timescale. Nevertheless,
adaptation is a widespread feature of sensory pro-
cessing, suggesting that neural circuits have evolved
to respond to both the spatial and temporal statistics
of the environment.

Efficient coding in sensory systems

Given the vast number of possible environmental
inputs and the finite amount of neural hardware
and metabolic energy possibly devoted to sensory
processing, it is natural to assume that sensory sys-
tems evolved toward functioning as efficiently as
possible. Although there are many possible defi-
nitions of efficiency, one enduring and influential
proposal for a general principle of sensory system
function is the efficient coding hypothesis. The fun-
damental idea is that sensory systems adapt their
responses to the regularities of their input, and em-
ploy knowledge about these regularities to increase
the amount of transmitted information at any given
time. This approach relies heavily on the work of
Shannon, who developed a quantitative theory of
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Figure 4. Structure in the sensory world. Sensory stimuli in the environment, such as the image of the cat, display significant
statistical structure. For example, the luminance value of nearby pixels in the image are significantly correlated, an effect that exists
for even nonadjacent pixels. Statistical structure in the sensory environment extends beyond simple two-point correlations, for
example, to stereotyped spatial frequency characteristics. Neural systems can improve their coding efficiency by accounting for and
reducing such information redundancy.

information fundamental to the field of commu-
nication.103 Attneave applied these ideas to percep-
tion, suggesting that a guiding principle for sensory
systems is the statistically efficient representation of
available information.104 Extending this idea to the
neural level, Barlow proposed that the goal of early
neurons in sensory processing is to remove the re-
dundancy in the input stimuli.105

These approaches are motivated by the fact that
signals arising from the natural environment are
highly structured.94 Such structural regularities im-
ply informational redundancy because an observer
with knowledge about part of a signal can predict
other parts of the signal with greater than chance
probability. Consider the processing of visual infor-
mation, from which most studies of natural statistics
and empirical evidence for neural efficient coding
have arisen. As initially pointed out by Attneave,104

there is a significant degree of redundancy in nat-
ural visual images because of correlation in both
the spatial and temporal domains. For example, as
shown in Figure 4, if the responses of a pair of pixels
separated by a fixed distance are examined across all
such pairs in a natural image, this activity will be
highly correlated. This kind of spatial correlation is
clearly evident upon even a casual examination of a
natural image, and such structural redundancies un-
derlie current image compression and transmission
technologies. These correlations reflect the under-
lying smoothness of natural images in both space
and time: luminance primarily changes gradually

(with the exception of sharp transitions at edges),
line segments vary as contours, and visual inputs
change smoothly with time. Additional structure is
evident when one considers the spatial and temporal
dimensions together.106 These statistical regularities
constrain the images a visual system is likely to en-
counter to a tiny fraction of the set of all possible
images, and visual circuits must be tuned to this
probable subset in order to represent this informa-
tion efficiently.

How is efficient coding evident in neural re-
sponses? At the level of single neurons, efficient cod-
ing requires that the input–output function be ad-
justed so that the entire response range is employed
to represent the stimulus distribution.107 For ex-
ample, under the constraints of a maximum firing
rate and finite precision, efficient neurons should
employ all activity levels equally in response to the
distribution (Fig. 5). If the input–output function
sensitivity is set too low, high levels of the stim-
ulus feature will be indistinguishable as the re-
sponse function saturates; if the sensitivity is set
too high, low levels of the stimulus feature cannot
drive responses. One early demonstration of the pre-
cise correspondence between activity and natural
stimulus statistics is Laughlin’s work on contrast-
sensitive neurons in the fly compound eye.108 Much
like the model depicted in Figure 5, the contrast-
response function of these neurons replicates the
curve that transforms the probability distribution
of natural contrasts into a flat response distribution,
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Figure 5. Efficient coding in sensory systems. For a given dis-
tribution of sensory characteristics in the world (bottom), an
efficient neural input–output function produces an output (top)
that equally uses all possible levels of neural activity. Such a
function matches the greatest sensitivity of neural responses
to the most probable stimuli in the environment, and has been
demonstrated in neurophysiological data from sensory systems.
(Adapted from Laughlin, 1981.108)

thus matching neural activity to the environmental
statistics. When the activity of multiple neurons are
considered together, the efficient encoding hypoth-
esis requires that the joint encoding of a stimulus
should reflect both optimal responses in individual
neurons and efficiency across the set of neurons.
For example, to maximize efficiency and reduce re-
dundancy, neural responses should be independent
of one another (decorrelated), and a given stimulus
should involve only a small fraction of the available
neurons (sparse).

Recent work suggests that contextual effects in
visual processing like surround modulation and
adaptation serve to implement efficient coding
representations. Theoretically, retinal and LGN
center-surround structures implement a spatial
decorrelation of outputs109 (termed a whitening of
the spectrum, in the frequency domain) and the
nonlinear interactions mediated by cortical eRF in-
teractions increase the sparseness of the output rep-
resentations.110 Efficient coding has been proposed
to explain the effect of context on neural responses,
like the orientation tuning curve changes driven by
surround stimuli.88,111,112 Empirically, when natu-
ral stimuli drive the surround of V1 neurons, re-
sponses are decorrelated and show a more efficient

sparse representation compared to cRF stimulation
alone.113,114 To explore how contextual modula-
tion increases the efficiency of sensory processing,
Schwartz and Simoncelli explored the possible com-
putational mechanisms linking the two. Specifically,
they examined divisive normalization, a gain-control
mechanism that characterizes contextual effects like
surround suppression and contrast gain control.
They found that models incorporating divisive nor-
malization increase the independence of neural re-
sponses and allow for efficient encoding of natural
visual and auditory signals.67

Modulation by temporal context can also serve
to improve the efficiency of sensory processing. The
fundamental principle of efficient coding is that a
sensory system is adjusted to the specific statistics of
the natural environment from which it encodes and
transmits information. However, if a sensory system
is hard-wired to only the global, long-term average
statistics of the world, it cannot efficiently transmit
information if the short-term, local statistics vary.
Experimental studies such as those reviewed previ-
ously suggest that sensory systems adapt to not only
the mean of stimulus distributions, but to high-
order statistics such as the variance. When coding
efficiency is quantified, adaptation rescales neuronal
input–output functions in a manner that maximizes
the transmission of information.115,116

An efficient coding framework for
context-dependent value encoding

How can sensory context effects and an efficient
coding framework illuminate our understanding of
the representation of value in neural circuits? The ef-
ficient coding hypothesis proposes that sensory sys-
tems reduce the redundancy in natural signals (by
increasing the efficiency of their output responses)
in order to maximize the information that can be
transmitted through limited capacity channels. Un-
like sensory information, value is not a product of
the environment alone, but a subjective construct
determined by both external information and the
state of the animal. Thus, value coding systems face
both external constraints given by the statistics of re-
ward distributions in the natural world and internal
constraints governed by factors such as physiologi-
cal status and metabolic needs. However, research in
foraging theory shows that animals in the real world
behave in manners distinct and highly suited to the
reward structure in their environmental niches.53
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This suggests that the number of possible value dis-
tributions in the environment is constrained, and
that the neural circuits driving behavior are tuned
to this environmental structure.

We hypothesize here that value systems in the
brain adopt coding strategies specific to their func-
tional requirements, a feature that specifies the
different forms of context-dependent value repre-
sentation. In particular, we hypothesize that it is
the statistics of the value distributions that each
circuit encounters that will structure the form of
the value representations. For action-value coding
in decision-related systems, value representations
arise simultaneously during action selection when
a choice must be made between multiple options.
For value systems involved in value and represen-
tation and storage, different value representations
may be activated at different times depending on
the environmental requirements. These response
patterns are analogous to the manner in which
the spatial and temporal aspects of incoming sen-
sory signals are represented, and contextual effects
in sensory processing offer a framework in which
to explore the analogous context-dependent value
representations.

As reviewed previously, the neural representation
of action value appears to be instantiated in a rela-
tive manner, dependent on the other action values
available at the time. This value representation is a
spatial form of contextual modulation: analogous
to extra-classical RF effects in the visual system,
modulation of a given neuron is driven by stim-
uli that themselves do not drive the spiking activity.
Although the function of the early sensory system
is to efficiently transmit information about stimu-
lus features, a decision circuit must select the best
option and discriminate between the values of the
possible choices. In terms of efficient coding, the
simultaneous options should be represented opti-
mally in neurons coding single actions and across
the set of active neurons coding the choice set.

For a single neuron, divisive normalization acts
as a means of compressive gain control even when
a single option is presented alone. Because reward
amounts are potentially limitless in the real world, a
gain control mechanism operates to transform this
wide range into the limited dynamic range of neural
firing rates. Analogous to mechanisms like the one
Laughlin described in the fly eye, divisive normal-
ization may adjust the value input–output function

to efficiently encode the distribution of possible val-
ues. Seen in this light, the shape of the gain control
observed in area LIP may reflect an underlying value
distribution that is significantly skewed, with most
possible options occurring at low values and a long
tail of rare, higher values. The degree to which such
compression increases the efficiency of the repre-
sentation is difficult to quantify without knowledge
about the natural statistics of rewards. Although
ecological reward distributions have been studied
for some animals and niches, the distribution of nat-
ural rewards in higher order primates, particularly
over evolutionary timescales, remains unknown.

However, like sensory systems, decision systems
must process multiple representations at the same
instant in time. For neurons encoding the value of
multiple actions, contextual modulation may serve
to adjust the range of neuronal firing rates across
the set of neurons to the value distribution of the
choice set. Consider a decision system whose goal is
to distinguish the higher valued of two rewards sep-
arated by a small amount when the values are low
versus when they are high. In addition to providing a
compression that keeps outputs within the dynamic
range of single neurons, a relative value representa-
tion dependent on the total reward available adjusts
the gain across the entire set of active neurons. Sig-
nificantly, the divisive normalization computation
that precisely characterizes relative value represen-
tation in the LIP also underlies spatial context effects
in visual processing, raising the possibility that di-
visive normalization represents a canonical cortical
computation that drives efficient gain control. This
form of instantaneous normalization across active
neurons may also apply to other brain areas that
simultaneously represent the value of stimuli or ac-
tions. For example, areas that serve as saliency or
attentional maps, representing simultaneous infor-
mation from locations spanning the environment,
may also implement a divisive normalization.69

In the temporal domain, contextual effects in
sensory processing have an analogue in the adap-
tation of neurons coding economic value in the
OFC that reflects the proposed role of orbitofrontal
neurons in the storage of value information. Unlike
action-value coding neurons in the LIP or premo-
tor cortex, OFC neurons are menu invariant and
are unmodulated by the presence of other choice
options. However, like neurons in the visual sys-
tem that adapt to statistics of the stimulus feature
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distribution, OFC responses show modulation by
values encountered over a longer timescale. This
adaptation is sensitive to multiple distribution
statistics, including the mean, range, and variance
of the recent value signals. Intuitively, adaptation
effects improve the efficiency of coding by adjust-
ing the input–output function of value neurons to
the appropriate local statistics of input values. For
example, when presented with reward distributions
with identical means but different variances, OFC
neurons adapt their responses so that their reward
sensitivity slopes align with the probable environ-
mental rewards. Using mutual information theory
to quantify the ability of neurons to discriminate
rewards, Kobayashi et al. showed that adaptive neu-
rons in OFC preserve the amount of encoded in-
formation regardless of the input statistics.75 Thus,
adaptive processes in value storage areas may pro-
duce a more efficient neural representation of value
for use in downstream decision processes.

Caveats

There remains much that is unknown about valu-
ation systems in the brain and their relationship to
the environment. Unlike natural sensory signals, the
distribution of values in the natural environment is
not nearly as easily defined or measured, particularly
if one wishes to examine the statistics of values over
an evolutionary timescale. It is comparatively easy to
extract the statistics of the sensory environment, but
the statistics of value will always be subject to the
interaction between an organism and its environ-
ment. Experimenters are beginning to address this
issue in the laboratory by constraining the statistics
of local values, an approach particularly suited to
the study of adaptive processes.

The parallels between contextual effects in value
coding and sensory processing reviewed previously
may reflect a shared functional architecture (like di-
visive normalization), a shared design principle (de-
pendence on natural statistics), or both. Although
the principle of efficient coding in sensory process-
ing provides an attractive framework to examine
contextual effects in value representation, it is im-
portant to note that the sensory system and valua-
tion networks have different functional goals. Infor-
mation theory approaches representation as purely a
problem of transmission, concerned with maximiz-
ing the amount of information in the signal while
reducing redundancy. This approach has reliably

characterized many of the early stages of sensory
processing, in which the primary goal is to transmit
information about the environment to the rest of the
brain, but higher order brain areas are likely to have
functional goals beyond strict transmission. Ulti-
mately, the selection pressure for all neural systems,
including sensory ones, is not maximizing the effi-
cient representation of information per se but max-
imizing the survival of the animal. Given the high
metabolic cost of neural systems, however, evolution
should favor an optimal use of resources, regardless
of whether this is implemented as efficiency in rep-
resentation, as proposed by the efficient-coding hy-
pothesis, or as another constraint. It is likely that ef-
ficient coding will not be the only principle through
which to understand the design of value systems, but
it provides an attractive starting point to examine
the nature of value processing.
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