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The neurotransmitter dopamine is central to the emerging discipline of neu-
roeconomics; it is hypothesized to encode the difference between expected and
realized rewards and thereby to mediate belief formation and choice. We develop
the first formal tests of this theory of dopaminergic function, based on a recent
axiomatization by Caplin and Dean (Quarterly Journal of Economics, 123 (2008),
663–702). These tests are satisfied by neural activity in the nucleus accumbens,
an area rich in dopamine receptors. We find evidence for separate positive and
negative reward prediction error signals, suggesting that behavioral asymmetries
in responses to losses and gains may parallel asymmetries in nucleus accumbens
activity.

I. INTRODUCTION

The neurotransmitter dopamine is central to the emerg-
ing discipline of neuroeconomics. Pioneering work by Wolfram
Schultz, P. Read Montague, Peter Dayan, and their colleagues1

suggests that dopamine not only participates in the encoding of
information on crucial economic variables such as preferences
and beliefs, but also plays a key role in choice and learning. The
“dopaminergic reward prediction error” (DRPE) hypothesis states
that instantaneous dopamine levels in the brain encode the differ-
ence between how rewarding an event is expected to be, and how
rewarding it turns out to be. Largely based on this hypothesis,
research informed by an understanding of the dopamine system
has already had an impact on the social sciences.2

Reasons for economists to be interested in observing reward
prediction errors are manifold.3 Beliefs play a central role in
theories of decision-making and learning, yet they are hard to

∗We thank Larry Katz and four anonymous referees for their suggestions and
open-mindedness. We thank Alberto Bisin, Peter Bossaerts, Mauricio Delgado,
Laura deSouza, Eric DeWitt, Ernst Fehr, Souheil Inati, Joe Kable, Ifat Levy,
Kenway Louie, P. Read Montague, Yael Niv, and Antonio Rangel for valuable
guidance.

1. See Schultz, Apicella, and Ljungberg (1993), Mirenowicz and Schultz
(1994), Montague, Dayan, and Sejnowski (1996), Schultz, Dayan, and Montague
(1997), and Hollerman and Schultz (1998).

2. For example, Bernheim and Rangel (2004), McClure et al. (2004), and
Bossaerts, Preuchoff, and Hsu (2008).

3. For more details, see Caplin and Dean (2008a, 2008b, 2008c).
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observe. Adding dopaminergic measurements to the arsenal
of belief measurement techniques can bolster current methods
based on structural models of the updating processes (e.g.,
Cheung and Friedman [1997]) or incentive-compatible elicitation
methods (Nyarko and Schotter 2002). Similarly, theories of
reference-dependent choice, such as loss aversion, give a central
role to the decision-maker’s reference point, yet little is known
about how this is determined.4 Dopamine provides a promising
line of attack for those seeking to understand reference points and
reward expectations, at least in tightly specified “neuroeconomic”
experiments.

Despite its promise, Caplin and Dean (2008a) detail eviden-
tiary gaps in the existing literature on the DRPE hypothesis.
Critically, most tests of the DRPE hypothesis assume that ex-
pectations are derived through reinforcement learning and then
test a highly parameterized version of the DRPE hypothesis.5 Yet
reinforcement learning often contradicts Bayesian learning, and
behavioral experiments suggest that it serves as a good model of
learning only in restrictive circumstances (Charness and Levin
2005). Moreover, the predictions of a given DRPE model based on
reinforcement learning are often violated in the data.6

To address these issues, Caplin and Dean (2008c) (henceforth
CDc) propose an axiomatically based testing protocol that dis-
connects the DRPE hypothesis entirely from learning behavior.
CDc consider a simple data set in which dopamine activity is ob-
served when prizes are obtained from different lotteries. In such
an environment, the DRPE hypothesis can be characterized by
three simple and easily testable axioms. These axioms target the
DRPE hypothesis without any of the auxiliary hypotheses that
have characterized previous tests.

The current paper thus contains the first tests of the ax-
iomatic version of the DRPE hypothesis. We pick a simple setting
in which the DRPE hypothesis can be completely characterized by
the three intuitive axioms of CDc. In the experiment that we use to
test these axioms, human subjects are endowed with lotteries from
which a prize is drawn. We use functional magnetic resonance
imaging (fMRI) to measure brain activity as the prize is revealed

4. Kahneman and Tversky (1979), Samuelson and Zeckhauser (1988), and
Köszegi and Rabin (2006).

5. For example, O’Doherty et al. (2004) and Bayer and Glimcher (2005).
6. For example, Berridge and Robinson (1998), Zink et al. (2003), Delgado

et al. (2005), Knutson and Peterson (2005), and Redgrave and Gurney (2006).
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to the subject. By comparing fMRI measures of activity as differ-
ent prizes are received from different lotteries, we test whether
activity in a brain region known as the nucleus accumbens satis-
fies the axioms. This brain region is a principal anatomical target
of the dopamine neurons hypothesized to encode the DRPE signal.

In broad terms, the results of our experimental tests support
the basic DRPE model. Of the three axioms that we test, two are
strongly supported, the third weakly. To a first approximation,
measured activity in the nucleus accumbens does indeed satisfy
the DRPE axioms. Our experiment also throws up one intrigu-
ing and unexpected finding. Our evidence suggests that overall
dopaminergic activity may be an amalgamation of two different
processes operating with different temporal dynamics: the signal
recording “positive” prediction error acts at a shorter time lag,
and with less intensity, than that recording negative prediction
error. This suggests that further study of the dopamine system
may be particularly valuable for those interested in understand-
ing asymmetric responses to gains and losses of the form described
in prospect theory (Kahneman and Tversky 1979).

II. DOPAMINE AND THE REWARD PREDICTION ERROR HYPOTHESIS

II.A. What Is Dopamine?

The brain is composed of tens of billions of neurons, tiny self-
sustaining units about a thousandth of an inch in diameter. A con-
nection between neurons across which communication can take
place is called a synapse. Such connections allow (in general) one-
way communication, with a presynaptic neuron communicating
information to one, or possibly many, postsynaptic cells. A neuro-
transmitter is a chemical used in this process of communication.
When a presynaptic neuron releases a neurotransmitter, it trav-
els across the synaptic cleft, the physical gap across which the
synaptic connection is made, and attaches itself to receptors in
the postsynaptic cell. Thus, the state of the postsynaptic neuron
comes to reflect the fact that the presynaptic neuron has released
a neurotransmitter, a form of information transfer.

Dopamine is one such neurotransmitter, and the term
dopamine (or dopaminergic) neuron refers to any neuron that
uses dopamine as a neurotransmitter to communicate with its
postsynaptic (downstream) partners. Although dopamine neurons
exist in several different parts of the brain, this paper focuses
on the midbrain dopamine neurons, a particular class of these
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neurons located at the base of the brain. Interestingly, although
the dendrites of these midbrain dopamine neurons (the structures
through which these cells receive inputs from upstream neurons)
are located in a relatively small region of the brain, the axons of
these neurons distribute dopaminergic synapses throughout al-
most half of the human brain. This suggests that the information
that they transmit might well be of importance to neurons in many
different functional divisions of the nervous system.

II.B. The DRPE Hypothesis

It was observed early on that many addictive drugs mimic
the effects of dopamine at the synapse, and that humans appear
to place a high positive value (as measured by both self-report
and choice) on processes that activate or mimic the activity of
midbrain dopamine neurons (see Wise [2004] for a review). As
a result of these early observations, midbrain dopamine neurons
were presumed to carry some kind of hedonic pleasure signal.

This simple “dopamine-as-pleasure” theory was called into
question by studies that showed that dopamine signals were
stronger when the same reward was delivered unexpectedly than
when it was expected. For example, Mirenowicz and Schultz
(1994) measured the activity of dopaminergic neurons in a thirsty
monkey as it learned to associate a tone with the receipt of fruit
juice. Dopamine neurons were initially active in response to the
juice but not the tone. However, after many repetitions (presum-
ably once the monkey had learned that the tone predicted the
arrival of juice), dopamine neurons responded to the tone rather
than to the juice. Moreover, once learning had taken place, if the
tone was played but the monkey did not receive the juice, then
there was a pause or decrease in the background level of dopamine
activity at the time that the juice was expected.

These findings led to the hypothesis that dopamine was
encoding the difference between “experienced” and “predicted”
reward, or a “reward prediction error” (Montague, Dayan, and
Sejnowski 1996; Schultz, Dayan, and Montague 1997). In the
above example, before learning had taken place, the receipt of
the fruit juice was a positive surprise (in the sense of a positive
utility shock) to the monkey, so dopamine responded in a positive
way. However, after learning had taken place, although still
rewarding, the fruit juice was no longer surprising, so dopamine
did not respond to its arrival. However, the tone was now both



NEUROECONOMICS OF BELIEFS AND REWARDS 927

surprising and rewarding, as it was unexpected and predicted
the imminent arrival of juice.

If correct, the DRPE hypothesis makes the observation of
dopamine of great potential interest to economists. Not only does
dopamine carry information on beliefs and rewards (or prefer-
ences), but subsequent studies have shown it to play an impor-
tant role in choice and learning. We will return to this point in
Section VI.

II.C. Testing the DRPE Hypothesis

The neuroscientific literature contains a number of tests of
the DRPE hypothesis on both monkeys and humans (Schultz,
Dayan, and Montague 1997; McClure, Berns, and Montague 2003;
O’Doherty et al. 2003, 2004; Bayer and Glimcher 2005; Abler et al.
2006; Li et al. 2006; Pessiglione et al. 2006; Bayer, Lau, and Glim-
cher 2007; D’Ardenne et al. 2008). Although generally support-
ive, these tests have all failed to be taken as conclusive proof
of the DRPE hypothesis. These tests typically operationalize the
DRPE hypothesis by assuming fixed values for the “experienced
reward” of different events and using a reinforcement learning
model to construct a time path for “predicted reward.” This allows
the authors to construct a “reward prediction error” for a sequence
of rewards and cues, which can then be compared to observed
dopamine activity. Typically, these studies do find that dopamine
activity, or neural activity in areas rich in dopamine receptors,
is correlated with the reward prediction error signal. Although
these restrictive tests have provided generally intriguing results,
it is unsurprising to learn that they have not conclusively demon-
strated that the DRPE theory is both necessary and sufficient to
explain the role of dopamine in behavior.

Perhaps the main reason that alternative theories of
dopamine remain plausible is that existing tests of the DRPE
hypothesis have relied on auxiliary assumptions (arbitrary pa-
rameterizations lying outside the theory) and on very weak tests.
It is easy to understand the attraction of such tests because they
provide insight not only into the basic question of whether or not
the DRPE hypothesis is correct, but also into the actual learn-
ing algorithm it may encode. Unfortunately, this makes it hard
to separate out precisely how strong is the support for the broad
hypothesis as opposed to the learning algorithm. In O’Doherty
et al. (2003), for example, the authors use a model of reinforce-
ment learning to fit neural responses. In support of the basic
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DRPE hypothesis, the evidence did suggest that once a human
had been repeatedly exposed to a tone that predicted a reward,
dopamine neurons became active in response to the tone itself. Al-
though it is clear that many parameterized versions of the DRPE
hypothesis do make such a prediction, (i) many other theories of
dopamine also make this prediction and (ii) many parameteriza-
tions of the DRPE theory do not make this prediction.

Tests such as this one are therefore joint tests of the un-
derlying DRPE model, the reinforcement learning model of belief
formation, and a set of arbitrary parameterizations. For this rea-
son, a set of alternative theories of dopamine function (and hence
alternative theories of the biological basis of belief formation) per-
sist. The qualitative fMRI studies of Zink et al. (2003), Delgado
et al. (2005), and Knutson and Peterson (2005) have, for exam-
ple, suggested that dopamine responses may be modulated by
“salience,” or how surprising an event is. Redgrave and Gurney
(2006) suggest that dopamine plays a role in switching attention
between different activities. The incentive salience hypothesis of
Berridge and Robinson (1998) holds that dopamine influences the
subject’s assessment of a reward’s salience, but in a way that is not
causally related to belief formation. By stripping away the need
for these additional assumptions, and by anchoring experimen-
tal data to conditions of necessity and sufficiency, the axiomatic
approach provides for tests of the underlying DRPE hypothesis
without relying on a particular model of belief formation or on
arbitrary parameterizations.

III. THE AXIOMATIC MODEL

In this paper, we use an axiomatic representation based on
the work of CDc to design and implement a test of the DRPE
hypothesis. The axiomatic representation provides a set of neces-
sary and sufficient conditions for the entire class of DRPE models.
Moreover, these tests do not require ad hoc auxiliary assumptions
on the nature of belief formation or “reward.” Thus the axioms
provide a simple and parsimonious way of testing the concepts
that lie at the heart of the DRPE hypothesis.

III.A. Definitions

The environment in which we formalize and test the DRPE
hypothesis is one in which an experimental subject is endowed
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with a lottery (or probability distribution over prizes) from which
a specific prize is then realized.7 The key observable is the firing
rate of dopamine neurons, δ(z, p), when the prize z is obtained from
the lottery p. The characterizations in CDc are based on an ide-
alized data set in which the dopaminergic firing rate is observed
for any such conceivable combination of prizes and lotteries. For
experimental purposes, it is important to deal with cases in which
we observe δ only on some finite subset A of all possible lottery–
prize pairs, as these are the data that will be generated by any
real-world experiment. We therefore define a finite version of the
data set described in CDc.8

DEFINITION 1. Let Z be a set of prizes with generic element z ∈ Z.
The set of all simple lotteries over Z is denoted ", with generic
element p ∈ ". We define the set "(z) as all lotteries with z
in their support, and denote as z the degenerate lottery that
assigns probability 1 to prize z ∈ Z,

z ∈ "(z) ≡ {p ∈ "|pz > 0}.

A dopaminergic data set comprises a finite set A consisting of
pairs (zn, pn), with zn ∈ Z and pn ∈ "(zn) for all 1 ≤ n ≤ N, and
with {z, z} ∈ A, ∀ z ∈ Z, together with a dopaminergic firing
rate δ : A → R for each observation (zn, pn) ∈ A.

In the two-prize case, a dopaminergic data set can be repre-
sented easily in graphical form, as demonstrated in Figure I. The
space of lotteries, ", can be represented by a single number: the
probability of winning prize 1. This forms the x-axis of these fig-
ures. We represent the function δ using two lines—the solid line
indicates the dopamine firing rate after prize 1 is obtained from
each of these lotteries (i.e., δ(z1, p)), whereas the dashed line rep-
resents the dopamine firing rate when prize 2 is obtained from
each lottery (i.e., δ(z2, p)).

The definition of a DRPE representation is as in CDc.
Effectively, we say that dopamine has a DRPE representation
if we can find an expected reward function for lotteries and

7. We do not allow observation of dopaminergic activity from a prize that is
impossible according to the given lottery (i.e., a prize from outside the support of
a particular lottery).

8. Given that the DRPE hypothesis has quite specific information on what
happens when there is no surprise, we will also insist that all no-surprise outcomes
of the form (z, z) are in the domain of observation, although this has no technical
impact on the availability of a DRPE representation.
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FIGURE I
Graphical Representation of Violations of the Axioms for the Two-Prize Case
Solid points represent example experimental measurements. Open points rep-

resent unobservable outcomes. (A) A violation of Axiom 1: Coherent Prize Dom-
inance. When received from lottery p, prize 1 leads to higher dopamine release
than does prize 2, indicating that prize 1 has higher experienced reward. This or-
der is reversed when the prizes are realized from lottery p′, suggesting that prize
2 has higher experienced reward. Thus a DRPE representation is impossible.
(B) A violation of Axiom 2: Coherent Lottery Dominance. More dopamine is re-
leased when prize 1 is obtained from lottery p′ than from lottery p, suggesting
that p has a higher predicted reward than p′. The reverse is true for prize 2, mak-
ing a DRPE representation impossible. (C) A violation of Axiom 3: No Surprise
Equivalence. The dopamine released when prize 1 is obtained from its degenerate
lottery is higher than when prize 2 is obtained from its degenerate lottery. (D) No
axioms are violated in this graph.

an experienced reward function for prizes such that dopamine
activity is decreasing in the former and increasing in the latter.
Furthermore, all situations in which experienced reward is equal
to actual reward, and thus there is no “reward prediction error,”
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must be treated equivalently by dopamine. These properties
capture the notion that dopamine encodes the difference between
experienced and predicted rewards.

DEFINITION 2. The finite dopaminergic data set (A, δ) admits a
dopaminergic reward prediction error (DRPE) representation
(r, E) if there exist functions r : " → R and E : r(Z) × r(") →
R such that δ(z, p) = E(r(z), r(p)), with E(., .) strictly increas-
ing in its first and strictly decreasing in its second argument,
and such that E(r(z), r(z)) = E(r(z′), r(z′)) for all z, z′ ∈ Z.9

III.B. The Three Axioms

CDc introduce three necessary conditions for the existence of
a DRPE representation. In the case in which there are three or
more prizes, these conditions are necessary but not sufficient for
a DRPE representation. Yet in the two-prize case one can prove
directly that such equivalence does indeed hold.

The first axiom, “Coherent Prize Dominance,” demands that
dopamine “rank” prizes consistently, regardless of what lottery
these prizes were obtained from. If winning prize 1 produces
more dopaminergic activity than winning prize 2 from the same
lottery, it must be the case that prize 1 has a higher experienced
reward. Thus, it must be the case that, from any lottery, there
is more dopamine released when prize 1 is obtained than when
prize 2 is obtained.

AXIOM 1 (A1: Coherent Prize Dominance). Given (z, p), (z′, p),
(z, p′), (z′, p′) ∈ A,

δ(z, p) > δ(z′, p) ⇒ δ(z, p′) > δ(z′, p′).

Figure IA shows a violation of this axiom, which in this graph-
ical space is equivalent to the requirement that the lines δ(z1, p)
and δ(z2, p) cannot cross.

The second axiom, “Coherent Lottery Dominance,” demands
that the ordering of lotteries by dopamine firing rate be indepen-
dent of the obtained prize. If a higher dopamine firing rate is
observed when prize 1 is obtained from lottery p′ than from p,
this indicates that p′ has a lower predicted reward than p. Thus

9. Note that we additionally assume that people make perfect predictions in
the case of degenerate lotteries: the predicted reward of the lottery p that gives
prize z for sure is equal to the experienced reward of prize z. Thus the experienced
reward function can be derived directly from the predicted reward function.
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it must also be true that we observe a higher dopamine firing rate
when prize 2 is obtained from p′ than when it is obtained from p.

AXIOM 2 (A2: Coherent Lottery Dominance). Given (z, p), (z′, p),
(z, p′), (z′, p′) ∈ A,

δ(z, p) > δ(z, p′) ⇒ δ(z′, p) > δ(z′, p′).

Graphically, coherent lottery ordering is equivalent to the
requirement that the lines δ(z1, p) and δ(z2, p) be co-monotonic—
that they have the same direction of slope between any two
points. Figure IB shows a case that contradicts this—higher
dopamine activity is observed when prize 1 is obtained from
lottery p′ than when it is obtained from lottery p, yet the exact
opposite is true for prize 2.

“No Surprise Equivalence” deals directly with situations in
which a particular prize is expected with certainty. These are
situations that dopamine must treat equivalently, regardless of
the prize, as there is no reward prediction error.

AXIOM 3 (A3: No Surprise Equivalence). Given z, z′ ∈ Z,

δ(z′, z′) = δ(z, z).

Figure IC shows a violation of this axiom, in which more
dopamine is released when prize 1 is obtained from its degenerate
lottery than when prize 2 is obtained from its degenerate lottery.
No Surprise Equivalence demands that the points δ(z1, 1) and
δ(z2, 0) take the same value.

In the case of two prizes, A1–A3 are necessary and sufficient
conditions for dopamine activity to be described by the DRPE
model.

THEOREM 1. With two pure prizes, a finite dopaminergic data set
admits a DRPE if and only if it satisfies A1–A3.10

Thus, in the two-prize case, if A1–A3 hold, we will be able to
extract consistent orderings over lotteries and prizes, which we
can label “dopaminergic” predicted and experienced reward, re-
spectively. Figure ID illustrates such a case. How these orderings
might relate to more traditional notions of reward and prediction
is a matter we discuss in the conclusion.

10. A proof of this theorem is available from the authors on request.
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III.C. Other Models of Dopamine Function

Although we have not explicitly axiomatized other models of
dopamine activity, it is clear how some of the alternative hypothe-
ses, if true, would lead to violations of the three axioms described
above. Here we focus on how the “hedonia” and “salience” hypothe-
ses would lead to violations of the representation.

The hedonia hypothesis states that, rather than encoding
a reward prediction error, dopamine encodes simply the reward
value of events. In other words, there is some reward function
r that attaches reward values to different events, and dopamine
activity is an increasing function of this reward value. Although
a system that encodes hedonia might satisfy A1 and A2, it would
violate A3: No Surprise Equivalence. Unless every object in the
observation set has the same reward value, different prizes would
lead to different dopaminergic responses, even when received from
degenerate lotteries. Thus A3 provides a test between the hedonia
and DRPE hypotheses.

The salience hypothesis states that dopamine responds to the
salience, or surprise associated with a particular event. Although
the concept of salience is often not well defined, it does seem that
for any sensible definition, a system that encoded salience would
violate both A1: Coherent Prize Dominance and A2: Coherent Lot-
tery Dominance. To see this, consider a case with two prizes, x and
y, and two lotteries. The first, p, gives prize x with 99% probability
and prize y with 1% probability, whereas the second, q, gives prize
x with 1% and y with 99%. In this case, the salient event is getting
prize y from lottery p or getting prize x from lottery q, as these
are the “surprising” events. Thus, a salience encoder would imply
that δ(y, p) > δ(x, p) but δ(x, q) > δ(y, q), violating A1. Similarly,
δ(y, p) > δ(y, q) but δ(x, q) > δ(x, p), violating A2. Thus, A1 and A2
provide a test between salience and the DRPE hypothesis.

IV. THE EXPERIMENT

We describe now the methodology by which we test the axioms
described above, and thus the DRPE hypothesis. In an ideal world,
we would make real-time observations directly from dopamine
neurons as agents chose among, and received prizes from, various
lotteries. Unfortunately, such measurements, although feasible in
animals (see, for example, Mirenowicz and Schultz [1994], Phillips
et al. [2003], and Bayer and Glimcher [2005]), are infeasible in
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humans due to the invasiveness of the procedure. Instead, we
measure dopamine activity indirectly using fMRI. This technique,
described in more detail below, relies on a difference in the mag-
netic susceptibility of oxygenated and deoxygenated blood to mea-
sure a blood oxygen level–dependent (BOLD) signal, which is in
turn related to brain activity. By focusing on an area of the basal
ganglia called the nucleus accumbens, which is known to receive
substantial inputs from the midbrain dopamine neurons, one can
obtain an estimate of dopamine-related activity in real time.11

Unfortunately, the data produced by this technique are noisy, so
we use repeated observations (both within and across subjects) to
construct estimates of δ. The assumptions we make in doing so
are discussed below.

IV.A. Experimental Design

The experimental paradigm we use is designed to endow sub-
jects with lotteries so that we can observe brain activity when they
are informed of what prize they have won from each lottery. On
each trial, subjects choose between two lotteries, represented by
pie charts, and experience the outcome of their chosen lottery. A
fixation cross signals the beginning of a trial. After 12.5 seconds,
two lotteries appear on either side of the fixation cross. After 5
seconds, the fixation cross is extinguished and the subject has
1.25 seconds to press a button to indicate which of the lotteries
he or she wishes to play. The chosen lottery moves to the center
of the display and after a delay period of 7.5 seconds, the outcome
of the lottery is determined (by a random number generator) and
revealed to the subject for 3.75 seconds. The prize which the sub-
ject receives is indicated by a change in the color of that prize’s
segment of the pie chart.12 If the subject fails to press a button
during the response window, he or she receives the worst prize
available from any lottery in the experiment, a loss of $10. Figure
II shows the timeline of a typical trial.

As we describe below, brain activity is measured at the point
at which the prize that the subject has won is revealed from the

11. It should be noted that this technique measures overall activity in this
brain area, to which dopaminergic action potentials are a major, although not
unique, contributor. This imposes on our measurement a limitation shared by all
fMRI-based studies of dopaminergic activity. If anything, however, this limitation
should bias our empirical results against observing the axiomatic behavior we
seek.

12. All the colors used in the experiment are approximately isoluminent, re-
ducing brain activity that comes about due solely to visual stimulation induced by
the changing display.
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FIGURE II
Experimental Design

Following a fixation period, subjects were presented with two lotteries. When
the fixation cross was extinguished, subjects had 1,250 milliseconds to indicate
their choices by button presses. Following a delay period, the outcome was revealed
by a change in the color of the prize received. Durations of each period in the 30-
second trial are given in milliseconds. In this example, the subject chose the lottery
on the left and won $5.

lottery he or she owns. It should be noted that, at this stage,
this is the only uncertainty that is resolving itself for the subject.
Subjects do not learn any more about future lotteries that they
will receive, or choices that they will be offered. Thus, we inter-
pret measured neural activity at this stage as the response to the
receipt of a particular prize from a particular lottery.

Each subject takes part in two separate scanning sessions
consisting of multiple blocks of 16 trials each. Before each session,
subjects are given instructions and complete one or more unpaid
practice blocks of trials outside the scanner. At the start of each
session, subjects are endowed with $100, given to them in cash,
with money added to or subtracted from this amount on the basis
of the outcome of each trial. How much they have won or lost is
reported at the end of each block. The final amount awarded to a
subject for a session is the $100 endowment, plus the cumulative
outcome (positive or negative) of all lotteries, plus a $35 show-up
fee. A full set of instructions is included in Appendix I.

It is worth commenting on some features of the experimental
design. First, although we ask subjects to choose between lotter-
ies, we do not make use of the choice data in this paper. The reason
we ask for choices is to keep the subject alert and engaged in the
experiment. An experimental session lasts for about two hours,
and if the subjects are not asked to perform any task during this
time they could lose concentration and, in some cases, fall asleep
inside the scanner. Second, each trial includes several relatively
long delays. The reason for this is that the BOLD signal measured
by the scanner is the convolution of the neural activity we wish to
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measure with a twenty-second-long “hemodynamic response func-
tion,” which approximately takes the form of a gamma function.
Thus, by spacing out events within a trial, differentiation between
activity associated with different events becomes more accurate.
Third, we make the somewhat unusual choice to reward subjects
based on the outcome of every trial, rather than on the basis of
some randomly selected subset of trials. The reason for this is also
to keep subjects engaged in the experiment. Finally, as subjects
can win or lose money on each trial, there is a chance that the sub-
jects will lose all of their $100 in the course of a scanning session.
Although we designed the experiment to minimize the risk of this
happening, it is possible. In such an occurrence, the experiment is
stopped as soon as the subject’s account reaches zero, and the scan
terminated by this event is excluded from all further analysis.

Our choice of the lotteries to present to subjects was gov-
erned by the need for repeated observations of lottery–prize pairs.
As fMRI data have a low signal-to-noise ratio, we need to observe
a subject receiving a particular prize from a particular lottery sev-
eral times to accurately estimate the underlying neural activity.
Thus, the set of lottery–prize pairs from which we make observa-
tions over a two-hour experiment is relatively small. We restrict
ourselves to two prizes (+$5, −$5) and five lotteries (probabili-
ties of winning $5 of 0, .25, .5, .75, and 1), giving eight possible
lottery–prize pairs.

In each trial, the subject is offered a choice between one lot-
tery from the above observation set and a second lottery from a
larger decoy set, which included lotteries that have $0 and −$10
in their support. To ensure that the lottery from the observation
set is chosen in most trials, the decoy lottery has an expected
value of between $1.25 and $5 less than the observation lottery.
In each sixteen-trial scan, assuming the observation lottery is al-
ways chosen, the subject receives the degenerate lotteries (those
that have a 100% chance of winning a particular prize) twice each
and the other lotteries four times each. The ordering of lottery
presentation is randomized in each scan.

IV.B. Measuring δ

This experiment provides us with repeated occurrences of a
subject receiving a particular prize from a particular lottery. There
are four steps to using the experiment to construct measures of δ,
and so test our axioms:
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1. Use fMRI to obtain data on BOLD activity for all locations
within the subject’s brain.

2. Define an anatomically restricted region of interest (ROI)
within the brain (a subarea very densely populated with
dopaminergic synapses), the activity in which we will use
as a proxy for dopaminergic activity.

3. Construct a time series of activity in the ROI, and use this
time series to construct estimates of δ.

4. Use these estimates of δ to test our axioms.

The following sections describe each of these steps in detail.

(1) From Functional Magnetic Resonance Imaging to
Dopamine.13 The signal measured by an MRI scanner is now
very well understood and the mapping of that signal to neural
activation is heavily constrained. The scanner works by placing a
subject in a strong and highly structured magnetic field and then
subjecting him or her to brief radiofrequency pulses of energy. As
different chemical substances respond to these pulses as a func-
tion of the local magnetic field, this allows the scanner to reveal
the chemical structure of tissue at any location inside the brain
with tremendous precision.

Relating information about the local chemical structure of
the brain to neural activity, however, is significantly more compli-
cated. The local shifts in electrical equilibrium produced by brain
activity lie well beyond the resolution of these devices. Instead, the
scanners measure brain activity indirectly by observing a small
change in the local chemical environment induced by neural ac-
tivity. When a brain cell becomes active, it consumes energy. This
demand for energy leads to an increase in blood flow. The response
of the blood flow system to increased demand is now well charac-
terized and approximates a linear process. The vascular system
responds to an impulse in demand with a delayed and graded in-
crease in blood flow, with an onset delayed by about two seconds
and a peak at a delay of about six seconds, a process known as
the hemodynamic response. Fortunately for neurobiologists, the
molecule hemoglobin, which carries oxygen to the cells, and the
density of which is controlled by the hemodynamic response, has
a magnetic signature that can be measured by the brain scanner.

13. For technical details of the imaging protocol and initial data analysis,
see Appendix II. For more details on magnetic resonance imaging, the reader is
referred to Huettel, Song, and McCarthy (2004).
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The brain scanner thus allows us to measure the hemody-
namic response as a time series at almost any location in the
brain. Signal-to-noise considerations, however, limit the precision
of this measurement. In practice the scanner yields, with each
measurement, the local oxygenation of the blood in little cubes
of brain tissue, typically 3 mm on a side, known as voxels. The
BOLD signal in each voxel is therefore an estimate of the average
metabolic demand by all of the neurons within that voxel—on the
order of 10,000,000 neurons. By repeating this measurement at in-
tervals of 1–2 seconds, intervals knows as repetition times (TRs),
one can construct a time series that reports average metabolic ac-
tivity in each 3-mm voxel in a human brain. A brain scan typically
consists of approximately 150,000 voxels, so this yields approxi-
mately 150,000 different time series for each brain scanned.

How can BOLD activity be related to the activity of dopamine
neurons? Recall that the MRI scanner averages the activity of
the roughly 10,000,000 neurons within each voxel. Unfortunately,
the average human brain contains only about 100,000 dopamine
neurons, which are distributed spatially over dozens of voxels. The
result is that direct measurement of the hemodynamic response
induced by the dopamine neurons is at present difficult. However,
each dopamine neuron connects to on the order of 10,000 other
cells, the locations of which are well known. This means that the
activity of on the order of one billion neurons are influenced by
dopamine activity, and we know the locations of these neurons.
The strategy for measuring dopamine activity in a living human
is thus to identify, ex ante, the locations in the brain containing
high densities of dopaminergic synapses and then to measure the
metabolic activity in these regions as a function of behavioral
manipulations hypothesized to influence dopaminergic activity.

Studies in animals, where it is feasible to measure both the
BOLD signal or dopamine chemically and the activity of nerve
cells directly, fortunately provide further constraints on the re-
lationship between dopamine activity and the BOLD signal. A
number of studies have now indicated that, at a biological level of
analysis, activity in the dopamine neurons and the BOLD signal
in our regions of interest are co-monotonic. (For a review of this
issue see Knutson and Gibbs [2007].)

(2) Defining Regions of Interest. Scanning subjects using
fMRI provides us with an enormous amount of information about
BOLD activity; for each of the 150,000 voxels in a scan of a
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typical subject’s brain it provides a time series of data points for
the entire scanning period. The next stage of our analysis is to
identify the areas of the brain that we will use to test our theory.
As discussed above, several experiments have shown patterns of
BOLD activity in the nucleus accumbens and ventral putamen
that are strikingly similar to patterns of dopamine activity
measured in animals using more direct techniques. Because the
nucleus accumbens receives particularly dense projections from a
large number of dopamine neurons and can be accurately defined
anatomically using data obtained from a brain scanner, we focus
on activity in this area as a proxy for dopamine activity. There are
two standard ways of identifying regions of interest within fMRI
data:

1. Anatomical ROI: Identified as a particular brain structure
using an understanding of the physical geography of the
brain.

2. Functional ROI: Defined by the way activity in that area
is related to a particular stimulus.

In this paper, we focus mainly on an anatomical definition of
the nucleus accumbens. For individual subjects, we defined the
nucleus accumbens according to the algorithm described in Neto
et al. (2008).14 Figure III shows the ROIs for three of our subjects.

As a robustness check for our results, we also employed a
functionally defined ROI, using the assumption that dopaminer-
gic neurons should, as a first approximation, respond positively
at the time of prize receipt to the difference between the value
of the prize and the expected value of the lottery from which it
came. We therefore regress brain activity in each voxel on this dif-
ference (as well as other variables described in Appendix II). We
used a random-effects group-level analysis15 to identify activity
positively correlated with this “expected reward prediction error”
regressor. Figure IV shows the significant areas at a threshold
of p < .0005 (uncorrected), areas that overlap considerably with

14. The dorsal limit of the nucleus accumbens is the horizontal plane passing
under the caudate nucleus head from the inferior border of the lateral ventricle
to the edge of the internal capsule. The lateral limit is the internal capsule. The
medial limit is the diagonal band of Broca. The ventral limit is the anterior hy-
pothalamic nucleus and the external capsule laterally. The posterior limit is the
anterior border of the anterior commissure. The anterior limit begins where the
anterior caudate head and putamen are clearly divided by the internal capsule.
The nucleus accumbens was defined bilaterally in this manner on the individual
high-resolution anatomical images in Talairach space (Talairach and Tournoux
1988).

15. See Appendix II for details.
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FIGURE III
The Nucleus Accumbens Defined Anatomically in Three Subjects

(A–C) Regions defined in three subjects (DV in A, MH in B, and PM in C).
Coronal sections (left, y = +7) and horizontal sections (right, z = +0) are shown for
each subject. The inset in (A) shows the outlined nucleus accumbens for subject DV.
The nucleus accumbens was defined by anatomical landmarks using the algorithm
described in Neto et al. (2008). Data are shown in radiological convention with the
right hemisphere on the left in the coronal sections and on the bottom in the
horizontal sections.

the typical anatomically defined nucleus accumbens. Unlike our
anatomical ROIs, which were defined in individual subjects, func-
tional ROIs were defined at the group level. In order to make the
definition of the ROI statistically independent of later tests of the
axioms, we split the data set into two halves, data sets a and b,
with set a containing odd-numbered scanning runs for the first
session and even-numbered runs for the second session, and set
b containing all other runs. We then collect data from set b using
the ROI defined using data from set a, and vice versa.

The next task is to combine BOLD data from the voxels iden-
tified in an ROI into a single time series. We do this by averaging
across all voxels in an ROI and then converting the average signal
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p < .0005 p < .000005

A

B

FIGURE IV
Group Analysis Showing the Brain Areas in Which Activity Is Correlated with

“Expected Reward Prediction Error”
(A) A region of correlation (p < .0005, uncorrected), which overlaps consider-

ably with the anatomically defined nucleus accumbens, can be seen in a coronal
(left, y = +7) and a horizontal section (right, z = +0), overlaid on a mean nor-
malized anatomical image. (B) When the data set is split in half, independent
regions of correlation (p < .005, uncorrected) are defined for data set a (blue), odd-
numbered runs in the first session and even-numbered runs in the second, and
data set b (yellow), the rest of the runs. The region of overlap between the two
regions is indicated as (green). The random-effects analyses include regressors for
the options onset, button press, outcome onset, and a parametric variable at the
time of the outcome onset. This variable is computed as the difference between
the outcome and the expected value of the lottery in dollars. All regressors are one
time point convolved with the canonical double-gamma hemodynamic response
function. Data are shown in radiological convention with the right hemisphere on
the left in the coronal sections and on the bottom in the horizontal sections.

in each trial to percent signal change according to standard fMRI
protocol; by using the last two time points of the fixation period as
a baseline and dividing the signal in a trial by the average signal
in those two time points.



942 QUARTERLY JOURNAL OF ECONOMICS

(3) Constructing δ. In an ideal world, we would use a within-
subjects design to test the axioms on an individual-by-individual
basis. However, fMRI data are still too noisy for such a test. We
therefore combine data across subjects, effectively treating our
data as all coming from a single person. In general, finding the
axioms satisfied at such a group level is neither necessary nor
sufficient to say that they are satisfied at the individual level.
Effectively, we rely on an assumption of homogeneity—that sub-
jects order prizes and lotteries the same way. In this case, this
only requires that all subjects find winning $5 more rewarding
than losing $5, and that all subjects expect a greater reward from
lotteries with higher objective probability of winning the better
prize. (Although we acknowledge the limitation of this approach,
we also note that this assumption of homogeneity has now been
used in literally tens of thousands of papers.)

We now use our time series data to provide estimates of δ.
We do this by regressing the time series of dopamine activity on
a sequence of dummy variables for each of the eight lottery–prize
pairs in the experiment, and using the estimated coefficients as an
estimate of activity caused by each pair. Specifically, we use a sepa-
rate dummy to represent the event of getting each given prize from
each given lottery (eight dummies). There is therefore one dummy
variable that takes the value 1 when the $5 prize is revealed from
the lottery that had a 50% chance of +$5 and 50% chance of −$5,
another that takes the value 1 when the −$5 is revealed from the
same lottery, and so on. Dummies take the value 1 for a time win-
dow starting 4 TRs (5 seconds) and finishing 10 TRs (12.5 seconds)
after a prize has been revealed. This time window is chosen to take
into account the hemodynamic response, the lag between brain ac-
tivity and the change in blood chemistry that can be detected by
fMRI. The coefficients on these dummies we use as our estimates δ.
Notationally, we will use δ̂(x, p) to indicate the estimated parame-
ter on the dummy that is set to 1 when prize x is received from the
lottery that gives the prize $5 with probability p. In addition, we
include scan-level dummies to capture scan-specific effects (i.e., a
separate dummy for each scan run—remembering that each sub-
ject takes part in multiple scans). The regression is performed
using ordinary least squares, with Huber/White/sandwich robust
standard errors (Huber 1967; White 1980).

(4) Testing the Axioms. We now face the challenge of using
our estimates, δ̂, to test our axioms. If these observations were
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deterministic then the test would be easy—by Theorem 1, all
we would have to do would be to take the numbers δ̂(x, p) and
check whether Coherent Prize Dominance, Coherent Lottery
Dominance, and No Surprise Equivalence hold. Unfortunately,
δ̂(x, p) are noisy estimates of underlying brain activity δ(x, p).
Ideally we would like to take the route of standard statistical
hypothesis testing, by stating the null hypothesis that the
underlying parameters δ(x, p) violate our axioms. We would then
wish to calculate the probability of observing δ̂(x, p) given this
null hypothesis. Such tests rely on our ability to use the null
hypothesis to generate a suitable test statistic. In the case of
simple linear restrictions, this presents no difficulty. However,
in this case, it is extremely difficult to do. We therefore take an
alternative approach, consisting of pairwise Wald tests. In partic-
ular, for each {x, p}, {y, q} ∈ A, we perform a test of the restriction
that δ(x, p) = δ(y, q). If we cannot reject this hypothesis, we treat
the two values as equal. If we can, then we treat them as unequal
in the same direction as the relation of δ̂(x, p) and δ̂(y, q).

We are now in a position to test our axioms. Let the function
sign(x) equal + if x is positive, − if x is negative, and = otherwise.
The test of our axioms can therefore be written as follows:! Axiom 1. Coherent Prize Dominance:

sign(δ(5, 0.25) − δ(−5, 0.25))
= sign(δ(5, 0.5) − δ(−5, 0.5))
= sign(δ(5, 0.75) − δ(−5, 0.75)).! Axiom 2. Coherent Lottery Dominance:

sign(δ(5, 0.25) − δ(5, 0.5))
= sign(δ(−5, 0.25) − δ(−5, 0.5))

and

sign(δ(5, 0.25) − δ(5, 0.75))
= sign(δ(−5, 0.25) − δ(−5, 0.75))

and

sign(δ(5, 0.5) − δ(5, 0.75))
= sign(δ(−5, 0.5) − δ(−5, 0.75)).! Axiom 3. No Surprise Equivalence:

δ(5, 1) = δ(−5, 0).
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One thing to note is that these criteria would be met by any
δ function that ordered prizes and lotteries consistently—for ex-
ample, one that ranked losing $5 above winning $5, or that was
everywhere constant. We therefore also provide a more restrictive
test based on the idea that reward should be increasing in mon-
etary value, and that predicted reward should be increasing in
lottery expected value, which we refer to as Strong Coherent Prize
Dominance and Strong Coherent Lottery Dominance.

V. EXPERIMENTAL RESULTS

V.A. Subjects

Fourteen paid volunteers participated in the experiment (nine
women, five men, all right-handed, mean age = 26.0 years (S.D.
8.1 years)). All participants gave informed consent in accordance
with the procedures of the University Committee on Activities
Involving Human Subjects of New York University. All subjects
completed at least 13 scans (of approximately 8 minutes each)
over two sessions. Excessive motion during the experiment ren-
dered the fMRI data for two subjects unusable.16 Of the remain-
ing twelve subjects, all completed 14–16 scans, with most subjects
(n = 9) completing 8 scans in each session.17

Subjects earned an average of $125 (S.D. $39) per session
including the endowment and show-up fee. One subject lost the
entirety of the endowment during the second scanning session,
and the final scan of that session is excluded from analysis. That
subject was also the only subject who failed to respond within
the required time window on more than 2 trials, missing 6 trials
in total. The average reaction time for successful responses was
382 ms (S.D. 103 ms). In total, 17 trials were missed of a possible
3,024. Due to a programming error, a further 4 trials erroneously
resulted in missed trials, despite the response being within the
specified time window. These 4 trials were excluded from further

16. Both subjects had nine scans with at least 0.1 mm per TR or 0.1◦ per
TR average motion in any direction; no other subject had more than three scans
with as much motion. These subjects were excluded from all further analysis, as
is common practice in fMRI studies.

17. To an experimental economist, the small number of experimental subjects
in this and other neuroscientific studies may be disturbing. This is particularly so
given that there are significant individual differences in neurological structure.
Unfortunately, it is a necessary feature of current experiments, given technological
constraints. Because dopaminergic responses are of interest to many research
groups, robustness of results is uncovered through independent replication.
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FIGURE V
Parameter Estimates Using the Full Time Window (TR 4–10)

Parameter estimates are shown for regions of interest in the nucleus accumbens
defined both (A) anatomically and (B) functionally. Error bars show ±1 robust
standard errors. Regressions run on 74,088 data points (TRs) from 2,975 trials,
189 scans, and 12 subjects.

analysis. Subjects usually chose the lottery with the higher ex-
pected value, with 6 subjects making such a choice on every trial.
In total, 28 choices of lotteries in the decoy set were made. Thus
out of a possible 3,024 trials in 189 completed scans, 2,975 trials
are included in further analysis.

V.B. Results

Figure VA shows the parameter estimates δ̂ for the anatom-
ically defined ROI. These estimates are shown in the graphical
format introduced in Section III.A. For each prize, we plot a line
showing the parameter estimates when that prize is received from
each observed lottery. Recall from Section III.B that our three ax-
ioms are equivalent to three properties of these graphs: that the
lines do not cross, that they are co-monotonic, and that δ̂(−5, 0) is
equal to δ̂(5, 1).

An examination of Figure VA suggests that activity in the
anatomically defined nucleus accumbens is consistent with Strong
Coherent Prize Dominance, Strong Coherent Lottery Dominance,
and No Surprise Equivalence: the line for the +$5 prize lies
everywhere above that for the −$5 prize, and both lines are
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TABLE I
STATISTICAL TESTS ON THE DIFFERENCE BETWEEN PARAMETER ESTIMATES

Anatomical ROI Functional ROI

Sign Prob. Sign Prob.

A1: Coherent prize dominance
{5, 0.25}–{−5, 0.25} + .0 + .0
{5, 0.50}–{−5, 0.50} + .0 + .0
{5, 0.75}–{−5, 0.75} + .0 + .0

A2: Coherent lottery dominance
{−5, 0.50}–{−5, 0.25} = 11.1 −∗ 5.3
{5, 0.50}–{5, 0.25} = 73.9 −∗ 9.7
{−5, 0.75}–{−5, 0.50} − .9 −∗ 9.3
{5, 0.75}–{5, 0.50} − 4.4 − .2
{−5, 0.75}–{−5, 0.25} − .0 − .0
{5, 0.75}–{5, 0.25} − 4.8 − .1

A3: No surprise equivalence
{−5, 0}–{5, 1} = 34.0 + .7

Notes. The Prob. column reports the probability that each hypothesis holds according to a Wald test of
linear restriction using robust standard errors. The Sign column shows a + or − if the test is significant in
that direction at the 5% level, with a ∗ appended if significant at the 10% level. Regressions run on 74,088
data points (TRs) from 2,975 trials, 189 scans, and 12 subjects.

downward-sloping. Furthermore, δ̂(−5, 0) looks very similar to
δ̂(5, 1), suggesting that No Surprise Equivalence might also hold.

Table I performs the statistical tests discussed in Sec-
tion IV.B(4) above. These largely confirm that the data satisfy
the three axioms. The evidence for Strong Coherent Prize Dom-
inance is overwhelming: the hypothesis that δ̂(−5, p) = δ̂(5, p)
is rejected at below the 0.1% level for each p ∈ {0.25, 0.5, 0.75}
(with δ̂(−5, p) < δ̂(5, p)). δ̂(−5, 0) is not significantly different from
δ̂(5, 1), so No Surprise Equivalence also holds. Coherent Lottery
Dominance also holds, but only in the weak sense: for neither
prize is δ̂(x, 0.25) statistically different from δ̂(x, 0.5), but, for both
prizes δ̂(x, 0.5) is significantly higher that δ̂(x, 0.75) and δ̂(x, 0.25)
is significantly higher that δ̂(x, 0.75). Thus, our key result is that
the BOLD signal recorded from the anatomically defined nu-
cleus accumbens region meets the necessary and sufficient cri-
teria required of a reward prediction error encoder. Moreover,
the ordering of prizes and lotteries is as one would expect—more
money is rated as “more rewarding” than less money, and lotteries
with a higher probability of winning $5 have a higher predicted
reward.
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V.C. Robustness Tests

Functionally Defined ROI. Figure VB shows the parameter
estimates for the functionally defined ROIs (the statistical tests
are also reported in Table I). In most major respects, the results
are the same: the line for the +$5 prize lies everywhere above that
for the −$5 prize, and both lines are downward-sloping. In fact,
for the functionally defined ROI, Axiom 2 holds in the strong as
well as the weak sense, as both lines are significantly downward-
sloping between all points. However, for this ROI, No Surprise
Equivalence does not hold: the amount of activity observed when
$5 is lost for sure is significantly higher than for when $5 is won
for sure.

Temporal Window. As a second check of the robustness of our
results, we examine the temporal window, or the time within each
trial during which δ̂ was estimated. To do this we construct a plot
of the average BOLD activity as a function of time for trials of each
lottery–prize pair. This is shown in Figure VI for both anatomi-
cally and functionally defined ROIs. The temporal window used
in the preceding analysis of δ̂ is shown in gray. For our results to
be robust to different time windows, we would require that the
ordering of these lines not change through the course of the trial.
Figure VI suggests that this is in fact not the case: Early time
periods (immediately after the lottery outcome is revealed) seem
to show clear differentiation between lotteries when the positive
prize is received, whereas the later time periods show differenti-
ation between lotteries when the negative prize is received. More-
over, activity for the degenerate lotteries seems to follow a rather
different pattern from that seen for nondegenerate lotteries. For
all nondegenerate lotteries, BOLD activity peaks soon after the
prize has been received, then falls. For the degenerate lotteries,
activity shows no spike in response to the revelation of the prize.

In order to further examine this apparent temporal variation
in δ̂, we reestimate our eight parameters on two different tempo-
ral windows: an early window (consisting of TR 4–6, where TR 0
is the time at which outcome is displayed) and a late window (TR
7–10) for both the anatomically and functionally defined ROIs.
These estimates are shown in Figures VII and VIII. Although still
satisfying Coherent Prize Dominance, the early window graph
(Figure VII) suggests that Coherent Lottery Dominance does not
hold in this period—the positive prize line remains downward-
sloping, whereas the negative prize line is largely flat. In contrast,
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FIGURE VI
Group-Level Time Courses Are Shown Averaged over All Voxels in a Region of

Interest for Twelve Subjects and Then Replotted as Trial Averages
Trial averages are shown for regions of interest in the nucleus accumbens de-

fined both (A) anatomically and (B) functionally. Trial averages are color-coded
by lottery–prize pair with the probability of winning $5 indicated for each. The
largest standard error for any timepoint for any lottery–prize pair is shown at
right. The timeline above the plot shows the expected time of responses to each
period using a 5-second (4 TRs) lag to account for the delay in the hemodynamic
response function. Peak responses typically coincided with the options onset, but-
ton press, and outcome onset (hereafter referred to as TR 0). The time window (TR
4–10) used for the analysis in Section V.B is shown in gray.

although Coherent Lottery Dominance does seem to hold approxi-
mately in the late window (Figure VIII), it seems that the respon-
siveness of activity to changes in lottery is much stronger for the
negative prize than the positive prize. This pattern is borne out
by Figure IX, which shows how the difference between δ̂(x, 0.25)
and δ̂(x, 0.75) changes with the estimation period for each prize
for the anatomically defined ROI. The figure plots these differ-
ences for estimates made on different 2-TR windows, starting at
the TR indicated on the x-axis. Thus the graph provides an indi-
cation of how the slope of the δ̂(5, x) and δ̂(−5, x) lines varies with
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FIGURE VII
Parameter Estimates Using the Early Time Window (TR 4–6)

Parameter estimates are shown for regions of interest in the nucleus accumbens
defined both (A) anatomically and (B) functionally. Error bars show ±1 robust
standard errors. Regressions run on 74,088 data points (TRs) from 2,975 trials,
189 scans, and 12 subjects.
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FIGURE VIII
Parameter Estimates Using the Late Time Window (TR 7–10)

Parameter estimates are shown for regions of interest in the nucleus accumbens
defined both (A) anatomically and (B) functionally. Error bars show ±1 robust
standard errors. Regressions run on 74,088 data points (TRs) from 2,975 trials,
189 scans, and 12 subjects.
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FIGURE IX
Difference in Parameter Estimates of Activity in the Anatomically Defined

Nucleus Accumbens between Cases Where Each Prize Is Received from the 25%
Lottery and the 75% Lottery

Each point represents this difference for a sliding 2-TR window starting at the
TR indicated on the x-axis, where TR 0 is the time of outcome onset and TR 4–10
is the time window used for prior analyses.

the time window considered. This graph indicates that the peak
differentiation between lotteries occurs around TR 4 for the pos-
itive prize and around TR 6 for the negative prize. Perhaps even
more surprisingly, the size of the differentiation for the negative
prize is also roughly twice as large as that for the positive prize.18

The economic and neurobiological implications of this result are
discussed below.

It should be noted that the original time window we selected
is not an ad hoc “knife edge” case for which the axioms hold. First
of all, the time window was selected in order to match what is
known about standard hemodynamic response functions. Second,
our original results are robust to balanced changes in the time
window—that is, changes in the time window that change the
start and end point of the window while keeping the central point
the same.19

18. It should be noted that interpreting differences in magnitudes in BOLD
signals is a complicated matter, particularly when increases and decreases in the
signal are compared. Thus the difference in magnitude should be interpreted with
caution.

19. In such windows Axioms 1 and 3 hold, whereas support for Axiom 2 is
mixed.
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V.D. Discussion

Our results can be summarized as follows:

1. Strong and robust support for Axiom A1: Coherent Prize
Dominance.

2. Support for Axiom A2: Coherent Lottery Dominance for the
average signal across the full time window of the hemody-
namic response.

3. Weak support for Axiom A3: No Surprise Equivalence in
the anatomical but not the functional ROI.

The results of this study are broadly a success for propo-
nents of the DRPE hypothesis. The average BOLD signal mea-
sured by fMRI from the anatomically defined nucleus accumbens
satisfies the three necessary and sufficient conditions for a re-
ward prediction–error encoder, although support is weak for the
third axiom. Certainly, this renders false previous claims that nu-
cleus accumbens activity (as measured by BOLD) cannot encode
a reward prediction error. In light of the axioms being satisfied,
there is a strong theoretical basis for using dopaminergic mea-
surements to define consistent measurements of “reward” and
“belief” based on neurobiological measurements of activity in this
area. In our experiment, these measurements satisfy basic ratio-
nality conditions: more money is more rewarding than less money,
and lotteries have a higher predicted reward if they have a higher
probability of winning the higher prize. Thus, our work rigorously
tests and confirms the conclusions of previous authors who have
found evidence indicative of the DRPE hypothesis in fMRI data
(McClure, Berns, and Montague 2003; O’Doherty et al. 2003, 2004;
Abler et al. 2006; Li et al. 2006; Pessiglione et al. 2006; D’Ardenne
et al. 2008).

Note that, although we do not axiomatically charactize
salience or hedonia models of dopamine activity, our results do
not look promising for these other potential explanations for the
information encoded in nucleus accumbens activity. Recall that,
from Section III.C, the key axiom that appears to be inconsis-
tent with the “hedonia” hypothesis was No Surprise Equivalence:
hedonia would imply that better prizes would lead to higher re-
sponses even from degenerate lotteries. In our data, either No
Surprise Equivalence holds (in the anatomically defined ROI) or
we find that the worse prize gives rise to higher dopamine activity
(functional ROI). Neither of these cases appears consistent with
the hedonia hypothesis.
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Our data also seem inconsistent with the possibility that
the nucleus accumbens encodes salience. Again, recall from
Section III.C that a standard reading of the salience hypothe-
sis would imply that dopamine activity should lead to a failure of
Coherent Prize Dominance. From the lottery p = .25, winning $5
is more surprising, and so arguably more salient than losing $5,
so winning $5 should lead to a higher dopamine response. From
the lottery p = .75, losing $5 is more salient than winning $5, so
losing $5 should lead to the higher dopamine response. We find no
evidence for such an effect.

The success of the DRPE hypothesis is largely robust to the
choice of functional or anatomical ROI. In both cases Coherent
Prize Dominance and Coherent Lottery Dominance hold. The only
difference between the two results is that No Surprise Equiva-
lence holds in the anatomical ROI and not in the functional ROI.
An examination of Figure VI suggests that this result may be
part of a richer story involving the degenerate lottery, which has
not yet received attention in either neurobiological or economic
circles. Clearly, the time course of activity following the revela-
tion of prizes is very different for the degenerate lotteries than
for all nondegenerate lotteries. Although revelation from the non-
degenerate lotteries leads to a sharp increase in BOLD activity,
followed by a gradual decline in all cases, revelation for the degen-
erate lotteries leads to a much slower, gentler increase in activity
for both the +$5 and −$5 prizes. For the anatomical ROI, the
path is the same for both prizes, whereas for the functional ROI,
the response for the −$5 line is somewhat higher than that for
the +$5. This result suggests that the degenerate lotteries are
treated differently at a neurological level than are nondegenerate
lotteries.

Perhaps the most novel feature of the data is that, although
average activation for the entire time window satisfies the DRPE
hypothesis, this seems to be due to the amalgamation of two
different processes, each with different temporal dynamics. This
result supports earlier controversial theoretical proposals (Daw,
Kakade, and Dayan 2002; Bayer and Glimcher 2005; Bayer, Lau,
and Glimcher 2007), which hypothesized that dopamine responses
may be asymmetric—recording positive but not negative reward
prediction error. Our findings raise the possibility that the nucleus
accumbens is indeed receiving, and possibly amalgamating, sig-
nals from two different processes that, between them, provide an
encoding of an RPE signal. A high priority in future research is to
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understand the robustness and significance of the distinct pattern
of dopaminergic responses to losses and gains that we identify.

As we note above, the observations that we make have to
do with activity in the nucleus accumbens, and not dopaminergic
activity per se. Thus, we cannot conclude from these findings that
dopamine is an RPE encoder. In fact, the evidence we find for two
different systems points to the possibility that dopamine may only
be encoding part of the RPE signal we observe here, as suggested
in Daw, Kakade, and Dayan (2002) and Bayer and Glimcher (2005)
and a recent detailed proposal by Dayan and Huys (2009). If this is
the case, then the signal we observe could reflect activity induced
in part by dopamine and in part by some other source that may
serve as the negative RPE encoder. To say more about the role
of dopamine and RPE, one would have to perform more direct
measurements of dopamine, such as single-unit recording from
dopamine neurons in monkeys. We see such a project as important
future research.

VI. CONCLUSIONS

This paper presents the first use of an axiomatic representa-
tion theorem to test a neurobiological hypothesis using neurobio-
logical data. We show that BOLD activity measured by fMRI in the
dopamine-rich nucleus accumbens can be modeled as encoding a
reward prediction error—the difference between the experienced
and predicted rewards of an event. In doing so, we believe that
this paper makes three contributions. First, it provides a concrete
answer to the question of whether activity in the nucleus accum-
bens can encode a reward prediction error. Second, it increases
the tools that economists have for studying economic behavior.
Third, it introduces the tools of axiomatic modeling into the study
of neuroscience.

Promising as our results are, they do not immediately ad-
vance our understanding of choice, the acid test of neuroeco-
nomic progress proposed by Bernheim (2009). Yet they point
the way to just such advances, in particular through the po-
tential of dopaminergic measurements to provide fresh insights
into the evolution of beliefs and of expectation-based reference
points. Given that the DRPE hypothesis holds, we can now de-
fine both dopaminergic reference points (the expected reward of
an event) and beliefs (the probabilities attached to states of the
world that would generate such an expectation). The next stage of
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our research agenda is to link these concepts to the equivalent con-
structs in standard decision theory—via experiments that relate
dopamine activation to choice. If such a link exists, then dopamine
can provide a new tool for understanding how beliefs and refer-
ence points evolve, rather than having to infer this from choice
data alone.20

Given their importance to play, understanding of beliefs is
particularly important in repeated games (Stahl and Wilson 1995;
Cheung and Friedman 1997; Fudenberg and Levine 1998). In this
arena, dopaminergic evidence will strengthen the arsenal of be-
lief elicitation techniques. Nyarko and Schotter (2002) were able
to explain play in various games far better using beliefs estimated
from an incentive-compatible mechanism than using model-based
estimates. Rutström and Wilcox (2006) provide an opposing exam-
ple in which model-estimated beliefs are superior. In contrast to
incentive-compatible mechanisms, dopaminergic techniques offer
a potential window into beliefs that does not interrupt the course
of play.

With respect to methodology, it is our belief that the axiomatic
approach has a significant role to play in the field of behavioral
neuroscience for the reasons discussed in more detail in Caplin
and Dean (2008a). This paper provides a proof of method, by us-
ing this approach to provide clear answers to a previously open
question within neuroscience—whether or not activity in the nu-
cleus accumbens encodes a reward prediction error signal.

Until now, model testing, comparison, and improvement in
neuroscience has taken place largely through a regression-based
approach, in which highly parameterized models of reward, belief,
and learning have been correlated with brain activity. In essence,
this approach constitutes a form of gradient-descent through mod-
eling space toward what is hoped to be a globally best model. We
believe that the axiomatic approach, which has characterized so

20. One open question is the extent to which our results will generalize be-
yond the simple experimental environment tested here. For example, do we know
that dopamine will respond the same way when there is a longer gap between
the predictive stimulus and reward, or if probabilities are subjective rather than
objective? To some extent these are open questions, though previous studies give
some guide. Gallistel and Gibbon (2000) show that dopamine does still seem to
encode a DRPE if signals and reward are temporally separated, as long as there
is not too much variation in the length of the intervals. Moreover, many previous
studies have attempted to test the DRPE hypothesis in environments in which
subjects have to learn probabilities from past rewards drawn from an unknown
distribution—which is much closer to the idea of subjective probabilities than
it is to objective probabilities. Of course, none of these studies test our axioms
directly.
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much of economic modeling during this same period, can provide
a powerful alternative to this nonstructural tradition, which at
present dominates neurobiological research. By clearly encapsu-
lating conditions of necessity and sufficiency for describing a class
of models, the axiomatic approach allows us to ask not whether
a particular model fits well but rather whether an entire class
of models can be falsified. What makes the axiomatic approach
uniquely powerful is that it presents a model in the clearest and
most easily falsifiable form possible. This represents a fundamen-
tal contribution that the economic approach can make to neuro-
science and one that we believe can have broad impact in that
discipline. Economic tools can help shape future neurobiological
discourse.

In summary, the present results indicate that brain activity
in the nucleus accumbens, as measured by fMRI, meets the cri-
teria of necessity and sufficiency for carrying a reward prediction
error signal. This fundamentally strengthens the conclusion that
reward prediction error-based learning of value occurs in the hu-
man brain. Axiomatic modeling, an approach that offers many
advantages over traditional neurobiological modeling, which is
often necessarily ad hoc in nature, can be used to provide novel
insights into brain function. In the converse direction, our broad
confirmation of the DRPE hypothesis suggests concrete ways in
which neurobiology will be able to return the compliment by pro-
viding new insights into economic behavior.

APPENDIX I: INSTRUCTIONS

We are interested in understanding how people choose and
value uncertain financial options, like lotteries. You will be asked
to make a series of choices between lotteries. For example, one
lottery might be the one pictured at right in Figure A.1. When you
play this lottery, you have a 50% probability of gaining $5 (of real
money) and a 50% probability of losing $5. Before you start the
game, we will give you $100 in real money. Put it in your pocket.
You will play the game with this money. If you win more money
over the course of the game, we will give you those winnings when
you finish. If you lose money during the game, you will return it
to the experimenter and you can keep the rest of the $100. If at
any point in the game, you lose all of your $100, the game ends
and you must return the money. You will play 8 rounds of 16 trials
each. At the start of each trial, a white cross appears at the center
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FIGURE A.1
Figures Included in the Instructions Given to Subjects before the Experiment

(Appendix I)
(A) Example lottery. (B) Task diagram.

of the screen (shown in Figure A.1). Then two lotteries will be
presented on the screen. Your task is to decide which of the two
lotteries you would prefer to play with the $100 in your pocket.
The amounts on the screen are in real money, which you can win
and lose on every trial. Press the left button for the lottery on the
left, the right for the lottery on the right. The lottery you chose
will then be shown in the center of the screen. There is no right
answer. We just want to know what lottery you would prefer to
play. The computer then rolls the dice and tells you which prize
you received. In the example below, you would have won $5 of real
money. After each block of trials, the computer tells you how much
you won or lost for that block and what your total earnings are
up to that point in the game. If you do not make a choice within
the 1.25-second time limit, the trial will end and the screen will
display “No Lottery Selected” and you will receive a penalty of
−$10 (the worst prize; shown in Figure A.1). Regardless of your
performance in the game, you will be paid a show-up fee of $35. If
you decide to quit playing the game before its conclusion, you will
be paid the show-up fee but you must return the $100. Good luck!

APPENDIX II: DETAILS OF IMAGING PROTOCOL AND DATA PROCESSING

A. Imaging

We used a Siemens Allegra 3-Tesla head-only scanner
equipped with a head coil from Nova Medical to collect the blood
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oxygen level–dependent (BOLD) signal. We collected 23 axial
slices of T2*-weighted functional images with an echo planar
imaging (EPI) pulse sequence. Our slices were oriented parallel
to the anterior–posterior commissure (AC–PC) plane. Sequence
parameters were as follows: 23 axial slices, repetition time (TR)
= 1.25 s, echo time (TE) = 30 ms, flip angle = 73◦, 64 × 64 ac-
quisition matrix, in-plane resolution = 3 × 3 mm, field of view
(FOV) = 192 mm, slice thickness = 3 mm). Each scan consisted
of sixteen 30-second trials with an additional fixation period of
15 seconds at the end of each scan, for a duration of 8 minutes
and 15 seconds per scan. Thus each scan consisted of 396 im-
ages. We also collected high-resolution T1-weighted anatomical
images using a magnetization-prepared rapid-acquisition gradi-
ent echo (MP-RAGE) pulse sequence (144 sagittal slices, TR =
2.5 s, TE = 3.93 ms, inversion time (TI) = 900 ms, flip angle = 8◦,
1 × 1 × 1 mm, 256 × 256 matrix in a 256-mm FOV). The display
was projected onto a screen at the back of the scanner and subjects
viewed the display through a mirror attached to the head coil. To
minimize head movements, subjects’ heads were stabilized with
foam padding.

B. Data Analysis

Data were analyzed with the BrainVoyager QX software pack-
age (Brain Innovation) with additional analyses performed in
MATLAB (MathWorks) and Stata (StataCorp). Preprocessing of
functional images included discarding the first four images to
avoid T1 saturation effects, sinc-interpolation for slice scan time
correction, intersession and intrasession 3D motion correction us-
ing six-parameter rigid body transformations, and linear trend
removal and high-pass filtering (cutoff of 3 cycles per scan) to re-
move low-frequency drift in the signal. Images were coregistered
with each subject’s anatomical scan, rotated to the AC–PC plane,
and transformed into Talairach space (Talairach and Tournoux
1988) using trilinear interpolation. For group-level random-effects
analyses only, data were also spatially smoothed with a Gaussian
kernel of 8 mm (full width at half maximum). We used the sum-
mary statistics approach to test when the mean effect at each voxel
was significantly different from zero across subjects. We modeled
the time course of activity as transient responses at the following
times convolved with the canonical double-gamma hemodynamic
impulse response function (peak = 6 s, undershoot peak = 15 s,
peak–undershoot ratio = 6): lotteries onset, button press, and
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outcome onset. We also included a parametric regressor at out-
come onset equal in magnitude to the difference between the out-
come and the expected value of the lottery in dollars. This regres-
sor allowed us to perform a traditional regression analysis on our
data.
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