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O U T L I N E

    INTRODUCTION 

   The goal of neuroeconomics is an algorithmic 
description of the human mechanism for choice. How 
far have we proceeded towards this goal? This volume 
reveals just how much information has been gathered. 
The studies presented here have leveraged existing 
scholarship to describe the mechanisms by which the 
values of actions are learned, how and where these 
values are encoded, how these valuations govern our 
actions, and how neural measurements can be used to 
constrain social scientific models of human behavior. 
With this information in hand, can we define the gross 
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features of the human choice system in a way that 
will be of use to economists, psychologists, and neu-
roscientists? Or, to put it more precisely, can we use 
the lens of economic theory and experiment to better 
understand the neurobiological and psychological 
data in a way that will benefit all three disciplines? 
My suspicion is that many of the scholars contribut-
ing to this volume would say that the answer to this 
question is yes, and that the back-pocket models that 
most of these scholars use to guide their research are 
remarkably similar. 

   With that in mind, this chapter seeks a fairly precise 
definition of a standard back-pocket model of human 
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decision-making that incorporates the bulk of what 
we know today. Of course such a model, if taken seri-
ously by policy-makers, could be dangerous. Many 
of the details of such a framework, even if all of those 
details were supported by contemporary data, would 
be both controversial and wrong. But a framework 
that organizes the information we have, and serves 
as a target for future challenges, may well maximize 
the forward movement of our discipline. Such a scaf-
fold might make clearer what we do know and what 
we do not know; where we have made progress, and 
where critical avenues remain unexplored. In that 
spirit, and with the certain knowledge that the details 
of the following framework are wrong, what follows 
is a fairly formal presentation of a  “ standard back-
pocket model ”  for choice. 

   My goal in presenting this model is to explicitly 
link neurobiological, psychological, and economic 
studies of choice so that we can examine the implica-
tions of this structure for all three of our parent dis-
ciplines. Simply relating a chooser’s options to her 
choices or simply specifying patterns of brain con-
nectivity and activation would run counter to the 
goals and spirit of neuroeconomics: What is called 
for is a hybrid approach that rigorously mixes the 
strategies and traditions of our fields so as to explic-
itly maximize the number of constraints these par-
ent disciplines can impose on our understanding of 
choice. In interpreting this approach, scholars trained 
in only one of the parent disciplines may be initially 
troubled. For classical neurobiologists, this approach 
may seem to include an overly formal definition of 
conceptual objects to no particular end. For econo-
mists, the emphasis may seem overly algorithmic and 
unnecessarily focused on cardinality. My own feeling, 
however, is that the interaction of these constraints is 
what makes neuroeconomics powerful. As I hope will 
become clear in this chapter, the explicit ties to eco-
nomics will allow neurobiologists to rule out whole 
classes of theories that have heretofore seemed rea-
sonable. The explicit ties to neurobiological data will 
reveal that only a tiny space in the vast landscape of 
economic theory can be viewed as compatible with 
the human neuroarchitecture. In any case, I ask the 
reader’s forbearance in this regard. I mean the presen-
tation to be  neuroeconomic . I hope the presentation will 
reveal two things: (1) that only a very specific set of 
economic theories is supported by the available data, 
and (2) that several very specific pieces of neurobio-
logical and psychological data are required to com-
plete the theoretical constraints on the architecture of 
human choice. 

   What follows, then, is a presentation in five parts. 
The first section provides a quick overview of the 
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basic mechanism for which I intend to argue. This sec-
tion is not meant to be a defensible piece of evidence-
based reasoning, but rather an opportunity to sketch 
out the shape of the coming argument. The second 
section provides a formal definition of the mathemati-
cal and empirical objects used in the rest of the pres-
entation. For some this may seem superfluous, and 
for others it may seem  ad hoc  or overly restrictive. 
I hope it will become clear as the exposition develops 
that we require these particular objects to link exist-
ing economic theory to empirical psychological and 
neuroscientific data. The third section will provide a 
detailed description of the evidence for a generalized 
neural mechanism of valuation – a detailed descrip-
tion of what we do and do not know about this proc-
ess, and a description of its surprisingly unitary and 
linear nature. The fourth section provides an over-
view of the choice mechanism itself; those circuits that 
take as their inputs the outputs of the valuation 
system and give as their output a plan of action – a 
choice. The chapter concludes by highlighting both 
the strengths and weaknesses of this standard back-
pocket model.  

    THE BASIC TWO-STAGE 
MODEL 

   Growing evidence suggests that the basic mecha-
nism for producing choices in primates of all kinds 
(a group which necessarily includes humans) involves 
a two-stage mechanism. The first of these stages is 
concerned with the valuation of all goods and actions; 
the second is concerned with choosing amongst the 
goods or actions presented in a given choice set. At a 
very basic level, one can think of the valuation mech-
anism as being associated with learning and repre-
senting the values of objects and actions. The choice 
mechanism can be viewed performing a transforma-
tion that takes as an input the values of the options 
under current consideration – the choice set – and 
stochastically returns a high-valued option used to 
guide physical action. Of course, the details of these 
mechanisms are subtle. Some features of the valu-
ations we infer from behavior (what an economist 
would call the  preference function ) seem to be attribut-
able to mechanical processes embedded in the choice 
mechanism itself. For example, the model suggests 
that hyperbolic temporal discounting may arise from 
a mixture of exponential temporal discounting within 
the valuation system and a set of divisive computa-
tions embedded in the choice mechanism (see, for 
example,  Glimcher  et al ., 2007 ). The mapping between 
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the physical valuation mechanisms of the brain and 
psychological notions of valuation will occasionally be 
complicated. In a similar way, the anatomical bounda-
ries between the choice and valuation mechanisms 
may not be entirely discrete. Our mixture of theoreti-
cal and empirical approaches will make it clear that 
neural activity in the  choice structures  both should and 
does influence activity in the valuation structures. For 
example, some neurons in key valuation areas like the 
striatum carry signals that encode choice. However, at 
a global level, it now seems extremely likely that the 
architecture is organized around this basic two-stage 
framework. 

   The neurobiological evidence for a two-stage proc-
ess, which will be reviewed in greater detail below, 
arises from several key observations which are sum-
marized only very briefly here. Perhaps the first 
explicit evidence for this segregation came from the 
work of Platt and Gimcher (1999). In the first half 
of that study, the authors recorded from neurons 
in the posterior parietal cortex while thirsty mon-
keys viewed two visual targets. In a typical trial, or 
round, the two targets might be associated with dif-
ferent magnitudes of reward, and after an initial 
delay the animal was informed which one of the two 
targets would yield that reward on this trial. From a 
choice-related point of view, each round was a deci-
sion between a response that yielded no reward and 
a response that yielded a small positively-valued 
reward. What Platt and Glimcher found, however, 
was that during the early part of the trial (before the 
zero-valued target was identified for that trial) these 
neurons produced firing rates almost linearly propor-
tional to the average value of the rewards that had 
previously been earned for selecting that target. These 
firing rates cardinally encoded, in action potentials (or 
spikes) per second, the average value of the targets, 
but in a way that  did not  influence choice on that trial. 
It was  “ as if ”  the mean expected utility of the action 
 look at the right target  was linearly encoded by neuro-
nal firing rates independent of choice. This is a point 
that will be developed in greater detail below, but the 
point I want to make here is that at the time this was 
seen as a major limitation of the study. In retrospect 
it provides some of the first compelling evidence that 
valuation and choice are dissociable. 

   At the same time, a huge number of studies from 
many different sub-areas of neuroscience began to 
suggest that broad swaths of the striatum and the 
frontal cortex both learn and represent the values of 
goods and actions even when learning is passive 
( Figure 32.1   ).  Delgado  et al . (2000)  and  Knutson  et al . 
(2000) , for example, found that when humans pas-
sively viewed events that resulted in unpredictable 
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gains or losses, the level of neural activation in several 
striatal and fronto-cortical areas was linearly corre-
lated with the magnitudes of these gains and losses. 
This constituted preliminary evidence that these 
value-encoding structures operate in the absence of 
choice 1 . Subsequent studies confirm this initial obser-
vation. During both choice and non-choice tasks, 
when humans face risky or certain gains, when they 
face delayed or immediate gains, the activation of 
discrete frontal and striatal nuclei is almost always 
near-linearly related to (subjective) measures of value. 
The linearity of this relationship may be surprising 
to economists, but this is not theory, it is simply an 
empirical (and surprisingly common neuroscientific) 
observation. These existing studies have made it clear 
that the neural systems for valuation are both neuro-
chemically and anatomically localized. 

   The critical first step towards this realization was 
the identification of reinforcement learning mecha-
nisms in the forebrain, and it is an understanding of 
these learning mechanisms that has paved the way 
towards a broader understanding of valuation. In the 
early 1990s, Wolfram Schultz and his colleagues (see, 
for example, Romo and Schulz, 1990;  Schultz and 
Romo, 1990 ;  Schultz,  et al ., 1993 ; also Chapter 21 in 
this volume) demonstrated that midbrain dopaminer-
gic neurons encode a  reward-prediction error . These are 
highly specialized and anatomically localized neurons 
that broadcast a signal throughout the striatum and 
the frontal cortex. Montague and colleagues (1997; see 
also Chapter 22 in this volume) provided the next step 
when they recognized that this class of signal could 
be used to construct a mechanism that learns, through 
trial-and-error, the values of actions or objects. What 
followed was 10 years of work which established the 
existence of at least three inter-related subsystems in 
these brain areas that employ distinct mechanisms for 
learning and representing value, and which interact to 
produce the valuations that guide choice (as summa-
rized in Chapters 12 and 24). This provided a set of 
landmark findings summarized by the many chapters 
in Part 3 of this volume. 

   In a similar way, studies of the movement control 
systems of the brain revealed both the need for and 
existence of a discrete choice mechanism. Although it 
may not be obvious to non-neuroscientists, the proc-
ess of producing a movement at the biomechanical 
level is extremely complicated. Checking one of two 
boxes on a retirement fund contract, or signaling 

 p0080  p0080 

 p0090  p0090 

THE BASIC TWO-STAGE MODEL

1 Of course, this analysis presumes that experiencing rewards and 
anticipating them for the purposes of decision share a common neu-
ral substrate. That this is true is now largely beyond dispute at the 
neurobiological level – a point that is developed later in the chapter.
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a choice with a rightward eye movement, requires 
quite precise coordination of what may be literally 
dozens of independent muscles. Each of these move-
ments, though, is a unitary object that must be selected 
and planned before it is executed. The hypothesis that 
option values influence muscles directly is easily fal-
sified. When a subject moves her pencil towards a 
checkbox on a page, the tip of the pencil is moved by 
over 30 muscles and joints with more than 7 degrees 
of freedom. Still, the tip of that pencil traces a straight 
line from start to checkbox with a Gaussian velocity 
profile that peaks about halfway through the move-
ment. Reaching for that checkbox reflects a move-
ment richly planned before it is executed. The most 
introductory neuroscience textbook reveals this fact. 
Of course, we know where much of the neural hard-
ware that plans and regulates movements is located. 
Areas like the motor cortex, the premotor cortex, the 
supplementary motor area, and Broadmann’s area 5 
all coordinate the generation of goal directed move-
ments of the arms. A similar (and better understood) 
system coordinates movements of the eyes. What this 
means is that value signals must be turned into action 

control signals somewhere within the nervous system, 
presumably at or above the level of motor cortex. It 
is this process that neurobiologists refer to as a  choice 
mechanism . What I point out here is that it is critical to 
keep in mind that choice must be accomplished before 
movements are designed. The movement control sys-
tems reflect a  final common path  before which choice 
must, under normal circumstances, be complete. 

   Our current evidence suggests that the choice sys-
tem involves large portions of the parietal cortex, 
amongst other areas (as summarized in Part 5 of this 
volume). These parietal areas receive both direct and 
indirect projections from the valuation areas, and 
project directly to the movement control areas. One 
issue that remains unclear, however, is how much the 
frontal cortex and basal ganglia participate directly in 
the choice process working in concert with these pari-
etal areas. We now know that specific neurons in the 
orbitofrontal cortex (as reviewed here in Chapter 29) 
and the dorsal striatum ( Samejima,  et al ., 2005 ;  Lau 
and Glimcher, 2008 ) of the monkey also represent 
goods and actions that have been chosen before these 
choices are executed, but whether these neurons par-
ticipate directly in choice is not known at this time. 

   This then, is a minimal working outline of the pri-
mate choice system: a valuation system that learns 
through repeated sampling of the environment and 
stores the values of actions and/or goods; a choice 
system that uses these values to select (from amongst 
a current choice set) a single option; and a motor con-
trol system that executes the physical responses dic-
tated by the choice. Of course future experiments will 
enrich this description – for example, it may well be 
the case that perceptual systems influence the valu-
ation systems in ways that we are just beginning to 
understand – but these seem to be the fundamental 
components of the primate architecture for choice as 
we understand it today. 

   Before beginning to examine the valuation and 
choice systems in detail, however, it is critical that we 
link these components to economic theory. This will 
provide both important constraints on how these sys-
tems operate and a common language for thinking 
about these problems. In what follows, definitions 
for conceptual objects explicitly linked to economic 
theory are presented. While these definitions may ini-
tially seem opaque to neurobiologists, neurobiological 
readers are urged to take them seriously. The role of 
these objects is to serve, in essence, as mapping rules 
that connect existing theoretical tools to the empirical 
measurements of neuroscience. At an earlier point in 
the history of neuroeconomics, it may have been valu-
able to speak in broadly metaphorical terms when say-
ing things like  “ this neuronal firing rate is like a utility 
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 FIGURE 32.1          A highly simplified view of the skeleto-motor 
output system of the monkey brain. The key feature communicated 
by the figure is that behavioral outputs must, in principle, converge 
on a final common pathway for movement control. PPC, posterior 
parietal cortex; A5, Broadmann’s Area 5; SMA, supplementary 
motor area; PMC, premotor cortex; M1, motor cortex.    
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 signal 2  ” . But as this field transitions to formal tests of 
explicit and powerful theories, this kind of metaphori-
cal relationship between theory and data becomes 
more and more untenable. If we are to leverage the 
precise and highly testable (if rarely tested) theories 
of economics and psychology, then we must be able to 
specify clearly  how  we would test those theories with 
neurobiological data – not just in a general way, but 
in a specific computational sense. The kinds of objects 
described below, I argue here, are what is required. 

   To many economists, a feature that will stand out 
about these objects is that they will seem unnecessar-
ily restrictive. Linear relationships will be postulated 
which do not seem necessary. From a logical point of 
view, I agree. These, however, are the objects for which 
our empirical data calls. To many neurobiologists, the 
objects I have selected for definition may seem arbi-
trary. In the sections below, I hope to convince you 
that the empirical data argue that these are also called 
for by our current data.  

    DEFINING OBJECTS 

    Expected Utility Theory 

   As several chapters in this volume make clear, the 
axiomatic approach in general and expected utility 
theory in particular have both good and bad features 
(for an overview of its advantages, see Chapter 3; 
for an overview of its weaknesses see Chapter 11). 
Formally, the theory of expected utility ( von Neumann 
and Morgenstern, 1944 ) rests on four axioms (or three, 
in Savage’s 1954 formulation). For our purposes, I 
want to stress why these axioms are not some set of 
strange and arbitrary assumptions about how people 
 must  behave, which is an interpretation often given to 
them by critics. The axioms are a statement not about 
people (or the brain) in any sense; the axioms are a 
precise definition of a theory. It is reasonable to dislike 
any theory, but it is important to stress that, counter to 
what many lay people believe, this is a very minimal-
istic theory – much, much less restrictive and much 
more intuitive than, for example, temporal difference 
theories of learning. If what neurobiologists studying 
decision-making want is a simple theory of how peo-
ple value things, then it is important for them to real-
ize that economists already have several such theories, 
and that the implications of these theories have been 
very well explored. When a class of behavior obeys the 
axioms of a given economic theory, then we already 
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know quite a bit about the valuation systems that can, 
in principle, underlie that behavior. It is for this reason 
that neurobiologists need to link their measurements 
to economic frameworks. This is the only way that 
neurobiologists can rigorously exploit what econo-
mists have already learned about valuation. 

   To make this clear, consider expected utility theory, 
which will serve as my initial focus in the presenta-
tion that follows. Expected utility theory proposes 
that choosers should (1) show complete and transitive 
preferences, and (2) obey a choice separability con-
straint in a way that seems quite reasonable (amongst 
other things). Saying that a chooser obeys the axiom 
of complete and transitive preferences is simply say-
ing formally that she could not be induced to: 

    1.     pay  1 cent and an apple  for an orange, then  
    2.     pay  1 cent and that orange  for a pear,  and   
    3.     pay  1 cent and that pear  for the original apple.    

   By the same token, saying that a chooser obeys 
the separability axiom (a variant of the more widely 
known independece axiom) is simply the assertion 
that she cannot: 

    1.     prefer an apple to an orange,  and   
    2.     prefer 1 cent and an orange to 1 cent and an apple.    

   This is the reason that these axioms were included 
in expected utility theory. What is interesting and 
powerful about the theory, though, is that any chooser 
who obeys these rules (and the other axioms of the 
theory) behaves exactly as if she had a stable monot-
onically increasing utility function and as if her choice 
behavior was aimed at maximizing her net utility 
according to that function. Saying someone behaves 
according to these sensible rules is mathematically 
equivalent to saying that it looks as if she is trying 
to maximize some specific utility function. That is an 
important insight into valuation that neurobiologists 
cannot afford to ignore 3 . 

   So what are these inferred utility functions like? A 
subject who behaves according to the axioms behaves 
 “ as if ”  she is maximizing some utility function, but 
how heavily does even an infinitely large dataset of 
choices constrain our understanding of this func-
tion? To understand the answer to this question, it is 
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DEFINING OBJECTS

2 And in fairness, I have probably been more guilty of this kind of met-
aphor than anyone else – a looseness in language that I now regret.

3 Let me stress here a point that may not be entirely obvious:  “ util-
ity ”  really  is   “ choice ”  when these axioms are obeyed. Utility is not 
 “ a feeling, ”  or  “ happiness, ”  or  “ a hedonic impulse. ”  Utility is a 
common scale for valuation which gives rise to choice when choice 
obeys these axioms. If choice obeys these axioms, it is just  as if  a 
utility function gave rise to these choices. Or, put the other way, if 
you had a measured function having these properties, and it could 
perfectly predict choice then it  would be  a utility function and the 
choices would of necessity obey the axioms. Period.
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necessary to understand three important features of 
utility that have not always been well enough appre-
ciated by neurobiologists. 

    1.       Utility is ordinal 

   Observations of choice constrain the shape, but not 
the scaling, of the utility function. We might be able to 
show that a set of observed choices and an assump-
tion that the chooser being studied obey the axioms of 
the theory are consistent with the idea (to take a sim-
ple example) that the utility of money to that chooser 
could be described as: 

 Utility Dollars� 0 6.
     

   With this equation, we can predict whether that 
chooser prefers a sure gain of $10 over a 50% chance of 
$22, and if the assumptions are correct for this chooser 
then our prediction is also correct. What is interesting 
to note, though, is that all of our predictions would 
also be correct if we had written her utility function as: 

 Utility Dollars� �50 0 6.
   

   or   

 Utility Dollars� �1000 0 6.
     

   This means that there are multiple equivalent rep-
resentations of this subject’s utility function. We can 
predict choices by using any of these equivalent util-
ity representations, but the one we employ in a given 
set of calculations is arbitrary. It is for this reason that 
economists refer to utility as an  ordinal scale  rather 
than as a discrete cardinal scale. To make the impor-
tance of this insight clear, consider a chooser who pre-
fers apples over oranges and oranges over pears. If we 
assume the axioms of expected utility theory for this 
person, we can say that this behavior ranks the util-
ity of the three objects. We can even arbitrarily assign 
apples a utility of 1 and pears a utility of 0 (for this 
chooser). Next, we could use lotteries (which of the 
following do you prefer:  a 50% chance of an apple and a 
50% change of a pear   or   an orange ?) to place oranges on 
this same scale, for example at a utility of 0.3. But con-
sider what happens when we suddenly introduce kiwi 
fruits to the chooser and it turns out that she prefers 
kiwis to apples. Then the entire scale must be regener-
ated. This  is  what is meant when an economist writes 
the word utility and it is no problem mathematically, 
but it points up an important feature. Utility functions 
are not cardinal sets of numbers that have definite val-
ues that can be added and subtracted. They are ordi-
nally arranged relations between choice objects, and 
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this places important mathematical limits on what you 
can (and cannot) do with utility functions as objects. 
The theory of value imposed by expected utility does 
not include predictions about the cardinal relations of 
utilities,  by design . For a neurobiologist, this imposes a 
particularly burdensome constraint. It implies that is 
meaningless to say that a neuron’s firing rate  is the rep-
resentation of  utility because such a statement lies out-
side the domain of expected utility theory. Neurons 
yield to us a fully cardinal measurement when we 
observe their firing rates. Firing rates are numbers 
that can be added and subtracted in a way that utili-
ties cannot. If a neuron had a firing rate that revealed 
the desirability of an apple irrespective of the other 
objects placed before that chooser (as in the study of 
Padoa-Schioppa and Assad, 2008), that neuron could 
 not  be said to encode the utility of apples, because 
one feature of this powerful theory is that the utility 
of apples is not a unique number 4 . Of course that fir-
ing rate could be linearly proportional to utility. If we 
increase the number of apples presented to the subject 
until the firing rate doubles we might be able to con-
clude that utility has doubled, but utility and firing 
rate would remain distinct in this important way.  

    2.        The Axioms of Utility Theory are not Always 
Consistent with Choice 

   Humans do, on occasion, both prefer an apple to an 
orange and also prefer 1 cent and an orange to 1 cent 
and an apple. This is (speaking a bit imprecisely) what 
the Allais (1954) paradox shows (see Chapters 1 and 
11 for more on this paradox). Of course, this has impli-
cations for economics, but it also has a huge implica-
tion for neuroscientists. If a neuron had a firing rate 
that was always linearly proportional to utility, then 
the firing rate of that neuron  could not be used to always 
predict real human choice . A neuron with a firing rate 
proportional to utility would – by definition – obey all 
of the axioms of expected utility. It could not generate 
the  Allais (1953)  paradox, because that is the nature of 
what is meant by  utility .  

    3.        Utility Implies Agent Welfare/Agent 
Well-being 

   One of the most important functions of economics 
is to tell us whether a change in policy or government 
will make people better off. Economists have often 
argued that expected utility theory helps them make 
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4 It is important to point out that this is not a limitation only of 
expected utility theory; it is a feature of almost all economic theo-
ries of value. 
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this determination. If, for example, all citizens were 
to obey the axioms of expected utility theory, then 
governments would have an easy time keeping them 
happy or, more formally, maximizing their welfare. 
Since a chooser who obeys expected utility always acts 
to maximize her own utility, then we can maximize 
her welfare by allowing her the freedom to choose 
whatever she desires. This is a common (though not 
necessarily ubiquitous) approach to figuring out how 
to design policies that maximize the well-being (or 
technically the  welfare ) of individuals. 

   It is important that neuroeconomists be aware of 
this issue, because if a neurobiologist was to argue 
that the firing rate of a neuron was linearly propor-
tional to utility he might be heard as saying that maxi-
mizing the firing rates of those neurons in citizens 
would be maximizing their welfare, even if the fir-
ing rate of that neuron  could not be used to predict real 
human choice . I think that neuroscientists need to very 
carefully avoid making such a claim for the foreseea-
ble future. In almost all of the neuroeconomics studied 
to date, we have tried to link activity in the nervous 
system to choice behavior. This volume shows how 
much we know about the neural circuits that give rise 
to choice. By contrast, we know very little today about 
the neural circuits that give rise to an individual’s 
sense of well-being. If we did understand those neural 
circuits, then we might be able to make some claims 
related to welfare issues in economics. In any case, we 
do not have such expertise at this time, and I want to 
take care to emphasize that it is the neural mechanism 
of choice and not the neural mechanism for experienc-
ing well-being that this standard back-pocket model 
attempts to describe.   

    Defining Subjective Value (SV) 

   The task before us is to ask, how can we relate neu-
ronal firing rates, or measurements of the BOLD signal, 
to the valuations of actions and objects that we believe 
guide behavior? One way to proceed is to try to relate 
these activation patterns to expected utility. Under 
many conditions expected utility theory does predict 
choice, and that seems to be an observation that we 
do not want to overlook. On the other hand, one of the 
reasons that we want to develop an algorithmic model 
of decision-making is that we have every reason to 
believe that such an algorithmic model would predict 
choice behavior even when expected utility theory can-
not. So how do we gain access to the theoretical power 
of expected utility theory without becoming burdened 
with its failures, and in a way that respects the two-
stage model for valuation and choice that is developing 

 p0290  p0290 

 s0080  s0080 

 p0300  p0300 

today? One has to note here that for many economists 
this is a critical point – and one about which there has 
been much confusion. To resolve this confusion, I sug-
gest the following definition: 

  Subjective value : Subjective values, at least for the pur-
poses of this initial argument, are real numbers ranging from 
0 to 1000. They take as their natural units action potentials 
per second. Subjective values have the following properties:   

    1.     Subjective values are equal to (or better yet defined as) 
the mean firing rates of specific populations of neurons, 
the identification of which follows. For this reason, sub-
jective values are linearly proportional to the BOLD 5  sig-
nal as measured in these same populations.  

    2.     Subjective values predict choice stochastically. More for-
mally, I define them as the sum of true subjective value 
and a noise term (see below). This means that subjective 
value theory will be most closely allied with random util-
ity-type models from economics.  

    3.     When expected utilities predict choice behavior, subjec-
tive values are linearly proportional to those expected 
utilities.  

    4.     Subjective values are  always  consistent with choice, 
though stochastically, even when choice is not consistent 
with expected utility theory.  

    5.     Subjective values have a unique  reference-dependent  
anchoring point called the baseline firing rate. All subjec-
tive values are encoded cardinally in firing rates relative 
to this baseline. This means that subjective value theory 
will be most closely allied with reference dependent 
forms of utility-type models from economics.    

   Of course I recognize that some of these properties 
will have to be relaxed, but probably not in impor-
tant ways. The BOLD signal and mean firing rates, 
for example, are not exactly linear in their relation, 
but these five statements capture the central features 
of subjective value around which our definition of the 
choice architecture will be organized. 

   First and foremost, the definition I suggest here 
allows us to be clear about why expected utility the-
ory will be enormously valuable to the neuroeconomic 
enterprise. Expected utility theory provides a compact 
definition that, under at least some circumstances, 
describes patterns of choices.  Where that is true , meas-
urements of utilities tell us unambiguously what SV 
 must  look like to within a linear transformation. (This, 
of course, assumes that we can find a mean neuronal 
firing rate that looks like a candidate for encoding SV, 
but we turn to that in the next section. For now, we 
simply seek clear definitions of our goals.) Second, 
this definition says that if we could actually meas-
ure SV, we would be able to use those measurements 
to predict behavioral violations of expected utility 
 theory, like the Allais paradox, as well as human 
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DEFINING OBJECTS

5 The Blood Oxygen Level Dependent Signal of functional Magnetic 
Resonance Imaging (fMRI).
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choice behavior well captured by other approaches 
like prospect theory. Third, SV must be subject-
specific. This follows, of course, from its relation to the 
utilities of expected utility theory. 

   SV is defined in units of average spikes per second 
as an object that predicts the choices of individuals. 
Finally, I want to be clear that measurements of SV  do 
not  have clear welfare implications. Because SV does 
not (at the very least) obey the independence axiom 
globally (since human choice does not obey this 
axiom), maximizing SV will not yield a maximization 
of something like a complete and transitive preference 
function. Further, and probably more importantly, SV 
predicts choice. Because we are modeling at an algo-
rithmic level, this does not mean,  ex ante , that SV is 
related to a chooser’s sense of well-being. That may be 
mediated by other neural systems. Welfare maximiza-
tion and SV maximization should not be equated. 

   To summarize, I define here the concept of subjec-
tive value which is meant to be a fully cardinal object 
with several important restrictions. At least initially, 
it cannot take negative values (an important point to 
which we will return). It has both a finite range and 
finite (and large) variance. The importance of this 
point will be immediately clear to neurobiologists. 
For economists, it means that errors and stochastic-
ity in choice are unavoidable features of the architec-
ture. This suggests properties related both to random 
utility models and to stochastic errors inchoice. The 
importance of this point will be immediately clear to 
economists. For neurobiologists, it means that when-
ever choice behavior obeys the axioms of random 
utility models we know a tremendous amount about 
how a final common valuation system ought to be 
behaving. Following this line of reasoning, then, my 
hypothesis is that SV is encoded directly in the valua-
tion mechanisms of the human brain and that existing 
economic theory tells us much about how this repre-
sentation must behave. As we make measurements to 
prove this, we will be able to place additional impor-
tant restrictions on SV. 

   Finally, I need to make it clear that what I am sug-
gesting is that one central goal of neuroeconomics 
should be to develop a complete theory of SV. As 
that theory is enriched, it will continue to refine our 
understanding of which economic theories are better 
than others at predicting SV. Random utility models, 
for example, will be shown below to be better predic-
tors of SV than traditional utility models. Reference-
dependent utility models will also be shown to be 
better predictors of SV than traditional consumption 
utility models. Whether traditional economists will 
care that empirical constraints on SV can be used to 
identify some utility-based models as closer fits to the 
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human choice architecture will, of course, be a matter 
of taste.  

    Relative Subjective Value (RSV) 

   We define the relative subjective value of a single 
option  j  as: 

 

RSV
SV

SV cj
j

i
�

�∑
   

   where  i  is the set of all options in a choice set (includ-
ing  j ) and c is an empirically measurable normaliza-
tion constant of the type first described in the cerebral 
cortex by  Heeger (1992) . Our current evidence sug-
gests that choices are actually made between options 
by comparing RSVs after corruption by noise. The 
evidence for this arises from work in parietal cortex, 
which is summarized in Chapters 4, 28, 29, and 31.    

    Obtained Subjective Value (ExperSV) 

   ObtainedSV is a pattern of neuronal firing, much 
like SV, which encodes the subjective value of current 
states of the world 6 . The neural location of ExperSV is 
not known, though the activity of dopamine neurons 
provides overwhelming evidence that it is present as 
one of the midbrain inputs to those neurons. For rea-
sons that will be described below, Obtained Subjective 
Value actually serves as one source of the utility-like 
properties of SV.  

    Reward Prediction Error (RPE) 

   RPE is defined here as in learning studies and as 
summarized in Chapter 22. It is: 

 
RPE SV ExperSVforecast� �α( )

      

    Stochastic Terms 

   The existing neural data suggest two sources of 
stochasticity that influence choice: one at the level of 
the valuation system and one at the level of the choice 
system. In economic terms, the first can be viewed 
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6 Let me stress again that ObtainedSV is not necessarily a welfare 
measurement.
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as roughly corresponding to random utility distribu-
tions 7  ( McFadden, 1974 ;  Gul and Pesendorfer, 2008 ) 
and the second as corresponding to the Trembling 
Hand 8  ( Selten, 1975 ) notion of stochastic behavior.  
There is compelling evidence for both such sources. 

    Subjective value variability  is a random term drawn 
from distribution assumed to be Gaussian and added 
to mean  subjective value  to yield SV. It is always 
present. The variance of this term may or may not be 
adjustable. 

    Cortical noise before choice  is a final noise source 
added (as a stochastic time series) to RSV before choice 
occurs. The source of this term is noise intrinsic to cor-
tical neurons, which requires that it be Poisson in dis-
tribution at the mechanistic point of addition (see, for 
example,  Tolhurst  et al ., 1983 ). Neuronal pooling that 
occurs during the choice process, and adjustability of 
the inter-neuronal correlation term, may be used to 
reduce this variance ( Krug  et al ., 2004 ). For more on the 
theoretical implications of this, see  Glimcher (2005) .  

    Valuation Mechanisms and Subjective Value 

   Formally (and of course too simplistically), sub-
jective value (and terms that inherit properties from 
subjective value) can be seen as a neuronal sum of 
the form: 

 

SV
x

j
i iji

ii

�
ω

ω
∑
∑

   

   where the term  i  indexes each of the neurons in the 
brain,  x i   is the firing rate of the  i th neuron, and   ω  i   
is a weight ranging from 0 to 1 describing the addi-
tive contribution of that neuron to the SV of object 
or action  j . This object places into the language of 
economics the standard neurobiological insight that 
a weighted sum of neurons in topographic maps 
encodes behaviorally relevant variables (for more 
details on this neurobiological issue, see Lee  et al ., 
1988.) The subjective value of a particular object in 
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the external world,  j , is thus simply represented as 
the average weighted firing rate of a subpopulation 
of neurons that encodes the subjective value of that 
object 9 . In a topographically mapped action-encoding 
region like the superior colliculus, this is equivalent to 
saying that activity in a restricted region of the map 
encodes value for a particular action. I should note, 
however, that this definition specifically excludes dis-
tributed non-linear encoding schemes 10    

   For an empirical neurophysiologist or functional 
magnetic resonance imager looking for SV j  in the 
brain, two questions then become paramount: 

    1.     Is there a firing rate pattern (or a BOLD activation 
in the case of fMRI) we can identify in the brain 
that is linearly correlated with the utility of actions 
or objects (when utility predicts choice)?  

    2.     What is the most compact population of neurons 
(both in number of neurons and in anatomical extent 
of the population) that can maintain this linear 
correlation with SV j  (i.e. the smallest population of 
neurons for which  ω  i  is not equal to zero).    

   The data we have available today suggest that two 
brain areas seem likely to contain all the neurons we 
require to extract SV for any object: the ventral stria-
tum and the medial prefrontal cortex.   

    THE BASIC STRUCTURE OF THE 
VALUATION SYSTEM 

   If one accepts that (1) mammals evolved to learn 
the values of different states of the world both when 
their actions influenced those states and when they 
did not, and (2) that choices (the selection amongst 
available options) must be complete in the nervous 
system before actions can be planned and executed, 
then one can hypothesize that valuation must be at 
least partially autonomous of choice and that the proc-
ess of choice must be complete before action is pro-
duced. These hypotheses seem to have been validated 
by a wealth of empirical research in neuroscience 
conducted over the past couple of decades. Indeed, 
amongst neurobiologists there is essentially universal 
agreement that a group of neural systems for valua-
tion has been identified. 
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THE BASIC STRUCTURE OF THE VALUATION SYSTEM

7 Note that random utility theories form a class of economic mod-
els in which it is assumed that the subjective valuations of options 
vary stochastically, but that choosers always select the current best 
option from that stochastically varying set. In these models, it is the 
perception of value itself that is hypothesized to vary. Perhaps sur-
prisingly, these models place some very interesting constraints on 
the relationship between value representations and choice.
8 In contrast, trembling hand models propose that stochasticity 
in choice arises from errors during the choice process which lead 
to the selection of suboptimal elements from the choice set. These 
models place other interesting constraints on choice. One interest-
ing signature of models of this type is a dependency of errors on 
choice set construction.

9 This of necessity excludes non-linear interactions like those 
encountered in a game theoretic specification of SV. While it is not 
necessarily my intent to exclude these other kinds of interactions, 
the available data suggest that SV actually is linear with these firing 
rates. In any case, this definition could be relaxed. 
10 A constraint that could, at a later date, also be relaxed.
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   Almost certainly, the critical historical event that 
pointed towards a common neural system for valu-
ation was the study of learning and dopamine, a 
topic reviewed in detail in Part 3 of this volume. 
Understanding why the study of dopamine led to pos-
tulates about valuation, however, requires an exami-
nation of the history of dopamine. In the 1920s, the 
German physiologist Otto Loewi established that neu-
rons communicated with each other through a chemi-
cal mechanism we now call neurotransmission. His 
groundbreaking work established the existence, how-
ever, of only one neurotransmitter through which it 
was believed all neurons communicated. The existence 
of multiple neurotransmissive systems was revealed 
in 1964, when  Dahlström and Fuxe (1964)  visualized 
adrenaline-, noradrenaline-, and dopamine-containing 
neurons. These measurements revealed a set of ana-
tomically and neurochemically discrete brain systems, 
a structural feature of the nervous system that had not 
been previously identified. Of particular interest, for 
our purposes, was the discovery of two to three groups 
of dopamine containing cell bodies that projected from 
the midbrain (from two areas called the  substantia nigra 
pars compacta ,  SNc , and the  ventral tegmental area ,  VTA ) 
to the basal ganglia and the frontal cortex ( Figure 32.2   ). 
By the 1970s and 1980s it had become clear that many 
drugs of abuse acted through this system, suggesting a 
role for dopamine in hedonic experience. 

    Learning Subjective Values 

   The critical breakthrough that allowed modern 
studies of valuation to crystallize around the mid-
brain dopaminergic pathways, however, was the 
work of Schultz and colleagues (1993). These authors 
measured the spiking activity of single dopamine 
neurons while monkeys passively received rewards 
during a classical conditioning task (see Chapter 22 
for more details). They found that  unconditioned  
rewards produced a strong response in these neu-
rons, while conditioned rewards did not. This was an 
important finding, because it revealed that the activity 
of dopamine neurons  could not  simply code hedonic 
experience. This led Montague and colleagues (1997) 
to propose that dopamine neurons encoded the dif-
ference between expected and obtained rewards; the 
 reward-prediction error  of learning theory. What fol-
lowed were a host of papers that established that 
dopamine firing rates could be described as: 

 DA spks s ExpectedR ExperiencedR( / ) ( )� �α    

   where DA is the instantaneous firing rate of VTA and 
SNc dopamine neurons,  ExpectedR  is the magnitude 
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of the reward expected by the subject at this time, 
 ExperiencedR  is the magnitude of the reward being 
experienced by the subject at this time, and  α  is a 
scaling parameter that controls the subject’s learn-
ing rate as described below and in Chapter 22. If 
ExperiencedR is reward value in an arbitrary currency 
and some other computational element simply recom-
putes after every expected or unexpected reward   

 
Q Q DAj t j t, ,� ��1    

   where  j  indexes actions or goods and  t  indexes time, 
then  Q  represents a current estimate of the expected 
value of action or good  j . For economists, I note this is 
a recursive form of the Bellman equation computing a 
reversed discount function in which  α  describes a  for-
getting rate .   

   A very interesting feature of this system, which 
is, however, often overlooked, is the units in which 
 ExperiencedR  encodes the magnitudes of rewards 
being received. Consider a primary reward like water. 
If  ExperiencedR  encodes water in milliliters, then 
Q j  converges towards a representation of expected 
value in milliliters. If, however,  ExperiencedR  encodes 
something like the utility of water, or more formally 
it encodes  ObtainedSV , then the system converges 
not towards a representation of expected value but 
towards a representation of SV. This point is critical 
because neural systems of valuation must estimate 
real-world values through the sensory responses of 
neural transducers, and any upstream transformation 
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 FIGURE 32.2          The principal dopaminergic pathways of 
the midbrain. SNpc, substantia nigra pars compacta; VTA, ventral 
tegmental area.    
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of information by these transducers is propagated 
through the system – thus, if volume encoding affer-
ents from the tongue, like all sensory afferents that 
have ever been studied, encode a Stevens Power Law 
( Stevens, 1970 ) compressed representation of volume, 
then the set of Q j s computed from dopaminergic activ-
ity would encode (or inherit) a power function repre-
sentation of magnitude. It seems almost certain that 
this has to be the case, given that every sensory sys-
tem ever studied employs a power law for compres-
sion (see, for example,  Stevens, 1970 ). This leads to 
speculation that the encoding mechanism for primary 
rewards serves as at least one (if not the) source for 
the curvature of the utility function amongst primary 
rewards. It is also a possibility that this may offer 
some insight into the sources of reference dependence 
in human choice behavior. 

   For these reasons, it is tempting to speculate 
that dopamine neurons should receive as an input 
 ObtainedSV  from which their target neurons learn SV 
directly, thus accounting for the source of curvature 
in the utility functions for primary rewards with the 
neural hardware for sensory encoding. Of course this 
places some interesting constraints on how the DA 
neurons should work. They cannot, for example, code 
RSV (relative subjective value) with regard to a finite 
choice set, because if they did then SV could not be 
computed from them. The pre-existing body of eco-
nomic theory makes this clear. If they did code RSV, 
the stored SV of a good or action would be depend-
ent on the choice set within which it was learned. As 
a result, the choice mechanism would be unable to 
obey the axioms of complete and transitive preference 
which both humans and animals often obey. 

   This is an observation, however, that may seem at 
first blush to contradict data in the literature ( Tobler 
 et al ., 2005 ), and this apparent contradiction is impor-
tant because it highlights the power of economic the-
ory in neuroscience. These data suggest that the RPE 
signal measured in the dopamine neurons is vari-
ance dependent. As the variance of the reward stream 
increases the magnitude of the dopamine firing rate 
for a given  ExpectedR       �       ExperiencedR  goes down. 
Theory tells us, however, of the importance of com-
plete and transitive preferences and what they imply 
for valuation mechanisms, and seems to suggest that 
 ExpectedR       �       ExperiencedR  cannot scale with the vari-
ance of the choice set and still preserve transitivity in 
the stored representation of value. The resolution of 
this apparent paradox is that it must be the learning 
rate, and not  ExpectedR       �       ExperiencedR  itself, which 
scales with variance. In other words, we can say that 
if subjects are transitive behaviorally, we can reject the 
hypothesis that  ExpectedR       �       ExperiencedR  scales with 
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variance 11 . Our ability to make this statement comes 
from the explicit linkage of theory and measurement. 
Of course, this also raises the possibility that viola-
tions of complete and transitive preference – when 
these violations do occur – may reflect features of this 
measurable set of computations. 

   In any case, the dopamine neurons broadcast this 
signal throughout the frontal cortex and basal ganglia – 
also suggesting a role for all of these areas in learn-
ing. The observation that the firing rates of dopamine 
neurons encode the difference between expected and 
obtained reward is critical, because it reveals that the 
inputs to the dopamine neurons include a signal both 
of both the value of the reward that was received and 
the value of the reward that was expected – clear evi-
dence that a valuation signal of some kind, an object 
we have defined as  ObtainedSV , must exist 12 .  

   Though most of the work described above was con-
ducted in animals, there is clear evidence that these 
dopaminergic neurons behave in the same manner 
in humans as they do in all other living mammals. 
Like other mammals, humans find dopaminergic 
drugs reinforcing. Like other mammals, humans have 
these same dopaminergic pathways. Like other mam-
mals, dopaminergic drugs can be shown to bind to 
receptors in the terminal fields of these neurons. But 
the best evidence for the notion that a circumscribed 
learning-based valuation system associated with 
dopamine occurs in humans comes from fMRI stud-
ies of humans engaged in learning about rewards. 
In 2002, two groups ( O’Doherty  et al ., 2002 ;  Pagnoni 
 et al ., 2002 ) demonstrated simultaneously that activ-
ity in the dopaminergic terminal fields of the stria-
tum and the frontal cortex during both gustatory and 
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THE BASIC STRUCTURE OF THE VALUATION SYSTEM

11 In fact, this scaling of the learning rate with variance is a feature 
of efficient learning systems – a fact well described in any mathe-
matical treatment of the Kalman filter. 
12 To be more precise, there is now some compelling evidence 
that dopamine firing rates encode only positively valued, or near 
positively valued, reward-prediction errors ( Bayer and Glimcher, 
2005 ). There have been hints of this in the literature for some time 
( Hollerman and Schultz, 1998 ). The suggestion here is that posi-
tive and negative RPEs may be encoded separately in the nerv-
ous system ( Daw  et al ., 2002 ). The idea of splitting the RPE term 
into negative and positive elements should be naturally attrac-
tive to behavioral economists. We have known since the work 
of Kahneman and Tversky (see, for example,  Kahneman and 
Tversky, 1979 ; also Chapter 11 of this volume) that human choos-
ers are more sensitive to losses than to gains – a feature known as 
loss aversion. If positive and negative RPEs are coded by different 
systems and those systems map positive and negative values of 
 ExpectedR       �       ExperiencedR  to firing rate with different gain terms, 
then the ratio of these two independent gain terms could well 
account for some features of loss aversion.
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monetary reward tasks behaved exactly as predicted. 
This indicated, basically beyond a reasonable doubt, 
that there existed a valuation-learning system in the 
striatum and frontal cortex of humans. So to sum-
marize, this leads me to suggest that dopamine neu-
rons lead to the direct computation of SV under some 
conditions: 

 
SV SV SV ExperSVjt j t j t� � �� �( ) ( )( )1 1α

   

   where SV jt  is the subjective value of object or good 
 j , which is learned from repeated experience, as esti-
mated at time  t . Note that, as mentioned above, 
 ExperSV  for primary rewards is a compressive func-
tion of  ExperiencedR , as is really required by what we 
know of sensory encoding systems. This means that 
risk aversion, at least over primary rewards, is the 
product of Weber-type encoding mechanisms in our 
sensory apparatus.   

   What remains, then, is to understand where and 
how SV is mechanistically computed and stored. Two 
lines of evidence contribute to our understanding of 
these issues: neuronal recording studies in animals 
and fMRI studies in humans. The recording studies in 
animals have now established that the basal ganglia 
contain essentially all of the computational elements 
required for the execution of reinforcement learning 
(or, more precisely,  temporal difference  learning) algo-
rithms. There are, for example, neurons within the 
basal ganglia that encode the magnitude of reward 
that an animal expects to receive for producing a 
particular behavioral action, neurons that encode the 
actions that have just been executed, and neurons 
with firing rates dependent on the current state of the 
environment, amongst other things. These neurons 
are located in the striatum and project out of the basal 
ganglia largely through the ventrolateral nucleus of 
the thalamus, which in turn projects back to the fron-
tal cortex. Single unit recording studies in the frontal 
cortex have also demonstrated the existence of neu-
rons that encode values, but this time the values of 
goods, not of actions (see Chapter 29). fMRI studies 
in humans tell a similar story (see Chapters 23 and 
24 for more details), suggesting that frontal and basal 
ganglia circuits form the core of the human mecha-
nism for RPE-based value learning. 

   There is, however, evidence for other learning 
mechanisms in these same structures which interact 
with this well studied RPE-style learning mechanism. 
The details of these other learning systems are still 
being worked out, but what is known to date is 
described in Chapters 12 and 24 of this volume. In 
essence, these studies suggest that a set of mechanisms, 
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most if not all interacting with dopamine, provide 
tools for learning and representing value in the frontal 
cortex and the basal ganglia. 

   For a neuroeconomist, then, these studies constitute 
overwhelming evidence that a value system exists 
and can be functionally localized. Where, then, is the 
final point of convergence at which SVs are passed to 
the choice system? Put more formally, in a preceding 
section I argued that subjective value can be seen as a 
neuronal sum of the form 

 

SV
x

j
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ii
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   where the term  i  indexes each of the neurons in the 
brain, x  i   is the firing rate of the  i th neuron, and  ω   i   
is a weight ranging from 0 to 1 describing the addi-
tive contribution of that neuron to the SV of object or 
action  j . The question we need to answer is whether 
there is an anatomically discrete neuronal population 
that can supply all the non-zero values for  ω  required 
by the choice system.   

   One way to begin to answer this question is to look 
at the existing fMRI data and ask: is there a small 
number of areas that are actively correlated with SV 
under essentially all reward and choice conditions 
that have ever been studied? Perhaps surprisingly, the 
answer to this question seems to be yes: the ventral 
striatum and the medial prefrontal cortex show up in 
dozens of studies under essentially all choice condi-
tions as coding something like SV. 

   Activity in the ventral striatum has been shown 
to be correlated with both rewards and punishments 
( Delgado  et al ., 2000 ), the magnitude of cumulative 
rewards (Elliot  et al ., 2000), the anticipation of reward 
(Knutson, 2000;  Knutson  et al ., 2003 ), the expectation 
of monetary reward ( Breiter  et al ., 2001 ), the expecta-
tion of primary rewards ( O’Doherty  et al ., 2002 ), the 
receipt of monetary rewards ( Elliott  et al. , 2003 ), mon-
etary expected values ( Knutson  et al ., 2005 ), behavio-
ral preference rankings amongst rewards ( O’Doherty 
 et al ., 2006 ), potential gain magnitude and loss mag-
nitude as scaled by subject-specific levels of loss aver-
sion ( Tom  et al ., 2007 ), and discounted reward value at 
delays ranging from minutes to 6 months ( Kable and 
Glimcher, 2007 ). Single unit recording studies of the 
dorsal striata of monkeys, both in the caudate ( Lau 
and Glimcher, 2006 ) and in the putamen ( Samejima, 
 et al ., 2005 ), tell a similar story. Neurons in these areas 
have been identified which code action values. All of 
these data suggest that whenever rewards are received 
or preferences are expressed, activity in the ventral 
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striatum encodes the magnitudes of those rewards or 
preferences 13 .  

   A similar story seems to hold in the medial prefron-
tal cortex. Activity in this area has been shown to be 
correlated with monetary reward magnitude (       Knutson 
 et al ., 2000, 2003 ), preference ordering amongst 
primary rewards ( McClure  et al ., 2004a ), the expected 
value of a lottery ( Knutson,  et al ., 2005 ), the subject-
specific valuation of gains and losses ( Tom  et al ., 2007 ), 
the subject-specific discounted reward value ( Kable 
and Glimcher, 2007 ), and willingness to pay (Plassman 
 et al ., 2007). Activity in this area appears to be corre-
lated with valuation under all of these conditions. 

   This leads me to propose that mean activity in 
the medial prefrontal cortex and the ventral stria-
tum encodes SV. Different neuronal subpopulations 
in these areas must encode different options, and 
so these areas must employ a complex topographic 
encoding scheme which segregates the populations 
that encode the SVs of different actions or goods. The 
details of this encoding scheme, which probably lies 
beneath the resolution of fMRI, are only just begin-
ning to be understood, and the encoding schemes 
employed by the two areas are almost certainly differ-
ent. The medial prefrontal cortex, because of its closer 
relationship to goods-related encoding areas like the 
orbitofrontal cortex, may well encode SV in terms 
of goods, while the VS may employ an action-based 
encoding scheme. But in any case, I propose that these 
two areas serve as the final common representation of 
SV for use by the choice mechanism. 

   To be quite precise, I propose that the mean activ-
ity in subpopulations of the medial prefrontal cortex 
and the ventral striatum encodes SV when options are 
under consideration for choice or the objects of cur-
rent learning. It is this activity which, I argue, both 
guides choice and encodes the reward prediction (SV) 
that is used in learning (probably as resident in the 
ventral striatum). This information, I suggest, is stored 
throughout a much larger network of areas span-
ning the frontal cortex and the basal ganglia in the 
synaptic strengths connecting neurons in these areas, 
the strengths of these synapses being set by the well 
understood biophysical mechanisms of dopamine-
dependent long-term potentiation and long-term 
depression (and perhaps based on the actions of other 
plasticity generating neurotransmitters like serotonin). 
When instantaneous subjective value is represented, it 
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reflects, I propose, the sum of activity passing through 
these synapses located in areas including the inferior 
frontal sulcus, the insula, the amygdala, the posterior 
cingulate, the superior temporal sulcus, the caudate, 
the putamen, and the dorsolateral prefrontal cortex, 
and impinging on the ventral striatum and the medial 
prefrontal cortex. 

   What we know about the biophysics that would be 
required to instantiate this process have two impor-
tant implications that need to be mentioned. First, 
recall that all neurons have a limited dynamic range 
and a significant finite level of stochasticity in firing 
rate. This means that instantaneous SV is necessarily 
drawn at each instant from an underlying distribu-
tion. This therefore requires that the notion of SV be 
closely related to random utility models (and not tra-
ditional von Neumann-Morgenstern utility) from eco-
nomics. Second, it needs to be noted that all neurons 
have a  “ baseline ”  firing rate, and neurons in these 
areas are no exception. Recently, Tom and colleagues 
(2007) have shown that activation in these areas con-
tinuously represents gains and losses on a common 
scale with an inflection point at a zero-gain point in 
those experiments. This suggests that baseline spike 
rate in these populations is the unique representation 
of the reference point for SV’s reference-dependent 
encoding of value. Of course this conclusion, even if 
correct, does not constitute a theory of the reference 
point; it simply identifies an empirical technique for 
direct measurement of the reference point.   

    CHOICE 

   Unlike valuation, which has been extensively stud-
ied in both humans and other animals, choice has been 
the subject of study principally in awake-behaving 
monkeys in neuroscience. This may reflect the fact 
that the temporal dynamics of choice make it difficult 
to study with fMRI. In any case, an understanding of 
choice requires an understanding of existing work in 
non-human primates. 

   Initial studies of choice in monkeys evolved almost 
simultaneously from studies of sensory-perceptual 
systems (see, for example,  Newsome  et al ., 1989 ) and 
movement control studies (e.g.  Glimcher and Sparks, 
1992 ). The most important of these studies examined 
how monkeys used noisy visual-sensory signals to 
identify one of two orienting eye movements, or sac-
cades, as reinforced. They did this by leveraging an 
extensive pre-existing literature on the structure of 
the visual and eye-movement systems to search for 
the decision-making circuits which connected them in 
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13 However, one possibility that needs to be ruled out is that activ-
ity in the ventral striatum encodes only reward-prediction errors 
and not SV  per se . Available single unit data rule this out in all other 
areas of the striatum, but the definitive study has not yet been con-
ducted in the ventral striatum.
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these tasks (details of this line of study can be found in 
Chapters 4, 28, 29, and 31 of this volume). Subsequent 
work has generalized many, but not all, of these 
findings to arm-movement control systems and to 
studies of humans. 

   We have to begin, therefore, with a review of the 
basic structure of the saccadic control system ( Figure 
32.3   ). The lateral intraparietal area (LIP) in the pos-
terior parietal cortex is one of the critical elements in 
this system, and it consists of a roughly topographic 
map both of objects in the visual world and the eye 
movements that would required to align gaze with 
those objects (for a review, see  Glimcher, 2003 ). Thus, 
a particular location on the map (or more precisely the 
neurons on the map at that location) activates when a 
visual stimulus appears 10° to the right of fixation,  and  
that region might become particularly active millisec-
onds before an eye movement which shifts gaze 10° to 
the right. This area, in turn, projects both to the frontal 
eye-fields and the midbrain superior colliculus, two 
additional topographic maps that are broadly simi-
lar in function. The frontal eye-fields project, as well, 
to the superior colliculus directly. A final note is that 
many of these areas are reciprocally connected (for 
a review of this anatomy see  Platt  et al ., 2003 ), a fact 
which is probably important for understanding choice. 
Finally, the colliculus is connected to brainstem circuits 
that actually govern eye movements in real time. The 
connection between these brainstem systems and the 
colliculus are mediated by a class of collicular neurons 
called  “ burst ”  neurons. Burst neurons have the inter-
esting biophysical property that they can fire action 
potentials in either of two states: a continuous low-
frequency state in which many different firing rates 
are observed, and a burst state characterized by a 
fixed and extremely high firing rate. 

   It is widely assumed that actual generation of a 
movement involves driving the collicular burst neu-
rons above a specific firing-rate threshold, after which 
a burst occurs that is self-perpetuating and persists 
until the movement is complete. Inhibitory inter-
connections in the collicular map seem to preclude 
burst-like activity occurring at more than one loca-
tion at a time, suggesting that the collicular architec-
ture allows only a single movement to be executed 
at a time. Studies in area LIP, the frontal eye-fields, 
and the superior colliculus all indicate that low-
frequency firing in all three is related to the probabil-
ity that a movement will be executed by the animal. 
To be more specific, if a particular movement is likely 
to yield a reward, then activity in all three maps at the 
locations associated with that movement is elevated. 
Of these three maps, the one that has been most stud-
ied with regard to decision is LIP. In LIP, it has been 
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shown that if the magnitude of a reward or the likeli-
hood of a reward is systematically manipulated, then 
firing rates in these areas are a roughly linear function 
of those variables under many conditions. To be yet 
more precise, current data suggest that activity in this 
map encodes relative subjective value (RSV) of the 
type defined above. 

   Together, these data suggest the following model 
for eye-movement generation. At any moment in time, 
neurons in LIP represent the instantaneous RSV of 
each movement in the saccadic repertoire. Movements 
that have non-zero values are thus each represented 
by local activity on the map that is linearly proportion 
to RSV (see, for example,  Dorris and Glimcher, 2004 ). 
I hypothesize that the representation of SV localized 
in the medial prefrontal cortex and the ventral stria-
tum serve as the initial source of this signal. Previous 
studies have noted that other (and perhaps all) corti-
cal areas perform a divisive normalization on their 
input data ( Heeger, 1992 ;  Schwartz and Simoncelli, 
2001 ). It has now been observed that (at least to a first 
approximation) this also occurs in area LIP ( Dorris 
and Glimcher, 2004 ;  Sugrue  et al ., 2004 ;  Louie  et al ., 
2007 ), and the result is likely a shift from SV to RSV in 
the posterior parietal cortex. 

   RSV, it should be noted, would serve to map SV 
into the limited dynamic range of the LIP neurons. 
LIP neurons are limited in number, fire over a roughly 
100-Hz dynamic range, and have (errors that are 
drawn from a) Poisson-like distribution. This means 
that the representation of RSV, rather than SV, in this 
structure may solve an important problem. The shift 
to RSV guarantees a distribution of the SVs of the cur-
rent choice-set over the limited dynamic range of these 
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 FIGURE 32.3          The saccadic control system of the rhesus monkey 
in which most studies of the choice mechanism have been studied. 
V1, primary visual cortex; LIP, lateral intraparietal area; FEF, fron-
tal eye fields; SC, superior colliculus; BS, brainstem eye movement 
control circuits.    
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neurons. Unfortunately, the finite dynamic range and 
noise associated with these neurons may also impose 
a constraint. As the choice set becomes larger, noise 
may swamp the signal, leading to profound inefficien-
cies when selecting amongst large numbers of possible 
movements. One is tempted to speculate that this 
may, in fact, be a neural account for the choice-set size 
effects which have recently been examined in human 
choosers (see, for example,  Iyengar and Lepper, 2000 ). 
It may also be that processes like choice set editing are 
tools used by frontal areas to winnow the size of the 
choice set operated on in parietal areas. 

   It should also be noted that the Poisson variance of 
these neurons may serve a useful function by allow-
ing for stochasticity in behavior under conditions in 
which behaviors like mixed strategy equilibria arise. 
It was Nash who noted that mixed strategy equilibria 
arise when the expected utilities of the strategies 
being mixed are equivalent. In a similar way, when 
the RSVs of two options are equivalent it might be 
expected that the stochastic nature of these neurons 
yields mixed-strategy behavior. If these neurons are 
always stochastic in their behavior – a hypothesis that 
has been largely documented in monkeys – patterns 
of activity in LIP may be related to economic notions 
of the trembling hand ( Selten, 1975 ). 

   In summary, then, the available data suggest that 
at all three of these areas – LIP, FEF, and SC – carry 
signals encoding RSV, and that movements occur 
when activity associated with one of the positively-
valued options drives its associated collicular neurons 
into their burst mode. A tremendous amount of work 
(again summarized in Chapters 4, 28, 29, and 31) 
has examined this process of movement-triggering 
under conditions in which animals are instructed 
to make movements as quickly as possible. Less is 
known about how movement selection is triggered in 
non-reaction time settings. One important possibility 
is that an input to one or more of these areas alters the 
inhibitory interactions within the map, forcing conver-
gence to a single action. 

   The basic model proposed for selecting eye move-
ments is thus that signals encoding SV project 
to these areas, probably through LIP, which nor-
malizes those signals to represent RSV which 
is further contaminated by local noise, the degree of 
which across the entire population may be regulated 
by adjustable inter-neuronal correlations ( Glimcher, 
2005 ). These signals propagate recursively through 
these networks while reflecting SV inputs that may 
be entering the maps at many locations. An external 
signal then permits, or forces, convergence of the net-
work to a single choice which occurs when the collicu-
lar neurons are driven above their burst threshold. 
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   Preliminary evidence for this hypothesis has been 
gathered by  Louie and Glimcher (2006) , who have 
shown that early in a trial the neurons of LIP repre-
sent the RSV of discounted gains associated with spe-
cific saccades, and that it is only later in the trial that 
these same neurons come to encode information about 
the actual choice made by the animal. This seems to 
suggest that the basic model is sound, at least for tasks 
of this type. 

   Two questions, however, immediately arise: how 
does this system achieve choice amongst more abstract 
objects that do not have specific movements associated 
with them, and does this model generalize to humans 
and non-eye movement conditions? A limited amount 
of data exists which suggests that this general class 
of system does operate under conditions in which 
choices are made between more abstract objects. Gold 
and Shadlen, for example, demonstrated that when 
animals must choose between red and green targets 
that constantly interchange locations, activity in the 
superior colliculus reflects the instantaneous mapping 
between color and value even if this changes from 
trial to trial ( Gold and Shadlen, 2000 ; see also Horwitz 
and Newsome, 2001;  Sugrue  et al ., 2004 ). This clearly 
indicates that the saccadic choice circuit has access to 
instantaneous mapping information relating abstract 
properties to actions. It cannot tell us however, how 
choice is accomplished (or if it can be accomplished) 
in the absence of any mapping to motor circuitry of 
any kind. 

   We do, however, have some interesting hints 
that these choice circuits are interconnected with 
important valuation areas in the frontal cortex and 
basal ganglia.  Padoa-Schioppa and Assad (2006) , for 
example, have demonstrated the existence of neurons 
in the orbitofrontal cortex that encode an animal’s 
choice before the movement expressing that choice is 
executed. In a similar way,  Lau and Glimcher (2006)  
have observed choice neurons in the dorsal striatum. 
At the very least, this suggests that the choice cir-
cuit can send information about decisions frontally, 
but it may also indicate that these areas participate 
directly in the convergence process by which choice is 
accomplished. 

   The question of whether these circuits that have 
been so well studied in monkeys can be generalized 
to other classes of movements and other species is one 
about which we have much less information. We do 
know that adjacent to area LIP are areas specialized 
for arm, hand, and face movements. Standard theories 
suggest that a group of areas lining the intraparietal 
sulcus serve as movement-control interfaces for all 
of the body, although there are problems still being 
resolved with those hypotheses ( cf .  Levy  et al ., 2007 ). 
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But it does seem clear that the general theories of 
movement control advanced for the oculomotor sys-
tem do have analogues in the skeletomuscular sys-
tem. Further, injuries to any of these systems, in either 
humans or monkeys, leads to permanent deficits not 
in the musculature but in the ability to produce move-
ments. Finally, a small number of fMRI studies have 
shown value-related signals in the posterior parietal 
cortex, although these signals are almost always of 
weaker magnitude than in more frontal areas. This, of 
course, raises the possibility that the weaker fMRI sig-
nal reflects the temporal dynamics of choice observed 
in the  Louie and Glimcher (2006)  study. Because sub-
jective value is only represented until a decision is 
made, in these areas the magnitude of the SV signal, 
integrated over an entire trial, may be much less than 
in areas located more frontally where SV is repre-
sented throughout a trial.  

    ALTERNATIVES TO THE 
TWO-STAGE MODEL 

    Choice Probabilities 

   Some early models of the primate choice system 
proposed that when choosing between two actions 
a choice probability was computed directly from the 
identity of the option pair, rather than by comparing 
something like the utilities of the two options under 
consideration. This choice probability was then pro-
posed to stochastically direct action. When these mod-
els were introduced, some argued that they could 
serve as an alternative to preference-based models. 

   Two factors argue against models of this type. 
The first is axiomatic. Consider an agent who has 
been asked repeatedly to choose between choco-
late and apples. Then she is asked to choose repeat-
edly between apples and crackers. We can, of course, 
represent the behavior of the agent with two choice 
probabilities. If we begin, however, with the assump-
tion that the chooser represents  only  choice probabili-
ties, then we must necessarily remain agnostic about 
what the agent will select if we offer her a choice 
between chocolate and crackers. If, on the other hand, 
we hold a belief that knowing her choices under these 
first two conditions reveals her likely choice under 
the third condition, then we are basically assuming 
complete and transitive preferences that invoke a 
utility-like representation. In other words, we invoke 
a system which behaves  “ as if ”  abstract valuations, 
subjective values, are represented. 
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   The second factor arguing against this possibility 
is empirical. We now have compelling neurobiologi-
cal evidence that subjective values of some kind are 
represented in the brains of monkeys ( Dorris and 
Glimcher, 2004 ;  Sugrue  et al ., 2004 ,  Louie and Glimcher, 
2006 ; Padoa-Schioppa and Assad, 2008). In those 
experiments and others like them it has been dem-
onstrated that the subjective values of individual 
options, and not choice probabilities, are represented 
by neuronal firing rates. 

   For these two reasons we can consider choice-
probability-only based systems as empirically and 
theoretically falsified. Of course, it may well be that 
groups of neurons (or the local ensemble connections 
of those neurons) do explicitly represent choice prob-
abilities. Some evidence suggests that this may be the 
case in posterior parietal cortex, but we now have suf-
ficient evidence to conclude that the representation 
of subjective values – or something much like them – 
occurs within the central nervous systems of primates.  

    Multiple Selves 

   The principle alternatives to the standard back-
pocket model presented here are the multiple-self 
models that employ summation of some kind. These 
models typically propose the existence of two largely 
independent decision-making systems; one associ-
ated with so called  “ limbic ”  areas of the brain and 
the other with so called  “ rational ”  areas of the brain. 
While tremendously interesting from an economic 
point of view, these models are, for the most part, at 
variance with the majority of the existing corpus of 
neurobiological data . However, it is still germane to 
ask whether the existing evidence supports a two-
agent model of decision-making of the type proposed 
by Laibson and colleagues (see, for example,  Laibson, 
1997 ;  McClure  et al ., 2004b ). In that model, it is argued 
that the basal ganglia and medial prefrontal cortex 
form an emotional decision-making module which 
interacts (additively) with a second system organized 
around posterior parietal cortex and the dorsolateral 
prefrontal cortex, which form a rational decision-
making module. Anatomical considerations that 
weigh against this hypothesis aside, we must ask 
whether or not there is compelling evidence that the 
division of brain areas into emotional and rational 
subgroups as can be supported by the available data. 
My answer is no. In monkeys, it has now been con-
clusively shown that activity in the posterior pari-
etal cortex predicts preferences under all conditions 
that have been studied – for immediate rewards and 
for delayed rewards ( Janssen and Shadlen, 2005 ; 
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 Louie and Glimcher, 2006 ), for large rewards and for 
small rewards ( Platt and Glimcher, 1999 ;  Dorris and 
Glimcher, 2004 ), and for high-probability and low-
probability rewards ( Shadlen and Newsome, 1996 ; 
 Platt and Glimcher, 1999 ). The data from animals seem 
to be unambiguous here – LIP activity predicts choices 
for both rational and emotional decision-making. 
To take another example, let us turn to the basal gan-
glia. This is an area that a number of neuroeconomists 
have argued is associated with emotional decision-
making, but there is almost no evidence for this claim. 
Diseases of the basal ganglia are only very weakly 
associated with emotional dysfunction. The many 
dopaminergic forms of learning described in Part 3 of 
this volume, although largely mediated by the basal 
ganglia, do not seem to capture any clear notion of 
emotionality. A similar case can be made for studies 
of the medial prefrontal cortex. As noted above, there 
is evidence that this structure encodes monetary and 
primary rewards, preference, expected values, and 
gains and losses, and at least one study reports that 
it encodes long-delayed monetary gains. Indeed, 
even loss-aversion seems to be encoded in the unitary 
activity of this structure. Together, these data paint a 
picture of a structure globally involved in valuation – 
not a structure driven exclusively by immediacy, fear, 
or emotionality. 

   In summary, then, our available evidence seems 
to suggest that existing multiple-self models are 
largely unsupported by the bulk of our existing data. 
Of course, emotions do influence decision-making and 
choosers do show varying levels of self-control; that is 
beyond doubt. The question is, how do emotions and 
circuits related to self-control effect this influence? 
The amygdala, to take one example, may provide an 
answer. The amygdala projects strongly to the ven-
tral striatum and there is physiological and anatomi-
cal evidence that activity in the amygdala strongly 
influences activity in the ventral striatum. That does 
argue that the amygdala, and perhaps the emo-
tions that it encodes, can influence valuation-related 
activity in this area, but it does not make a compel-
ling case for a Freudian multiple-self model of neural 
decision-making.   

    CONCLUSION 

   What emerges from a review of the available 
human and animal data on decision-making is 
evidence of a two-stage model for choice. The first 
(or valuation) stage learns and represents the values 
of both actions and goods. Within this stage, at least 
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three learning mechanisms distributed in the basal 
ganglia and frontal cortex contribute to the construc-
tion of what we refer to as subjective value. These 
areas are hypothesized to learn subjective values, at 
a biophysical level, through the well-studied process 
of synaptic plasticity. These learning processes oper-
ate both during choice and during the passive receipt 
of rewards, effecting a disassociation between choice 
and valuation. 

   Our available evidence makes it clear that subjec-
tive value is a stochastic quantity, effectively drawn 
from a spiking distribution dependent on these syn-
aptic strengths. It is also a reference-dependent quan-
tity, as indicated by the  Tom  et al . (2007)  study. In this 
regard, subjective value is most closely allied to a 
reference-dependent random-utility model in eco-
nomic theory. I propose that SV is encoded specifically 
in the activity of the medial prefrontal cortex and the 
ventral striatum. I note that while SV is responsible 
for preferences, it can violate the axioms of expected 
utility theory; indeed, it must if it is to account for true 
preferences. Some of these violations doubtless reflect 
the influence of emotion-related brain structures on 
medial prefrontal cortical and ventral striatal activity. 

   Choice, I propose, is accomplished in a network 
that includes the posterior parietal cortex and a 
number of movement-related areas subsequent to it 
in the motor control stream. In these areas, the SVs 
of objects within a single choice set are normalized to 
RSVs. These RSVs are further modified by the addi-
tion of a variable noise term, of Poisson-distributional 
origin, prior to a winner-takes-all operation that 
accomplishes choice itself. This is a feature remi-
niscent of the trembling hand of economic theory in 
some important ways. Let me stress that the winner-
takes-all choice operation must be broadly distributed, 
and involves structures that range from the superior 
colliculus to the orbitofrontal cortex. 

   Of particular interest are several features of the 
model that remain unspecified. While there are many 
candidate pathways by which information from the 
medial prefrontal cortex and the ventral striatum may 
influence activity in the posterior parietal cortex, which 
of these pathways is critical for choice has not yet been 
determined. It has also been noted (see Chapter 29) that 
much of the posterior parietal cortex encodes SV with 
regard to actions, while neurons in the orbitofrontal 
cortex ( Padoa-Schioppa and Assad, 2006 ), and perhaps 
the medial prefrontal cortex, encode SV with regard to 
goods. We do not know how a transformation between 
these representations occurs, although we do know 
that it does occur. We also have only limited informa-
tion about the systems that  “ decide to choose. ”  In some 
tasks animals have to be trained to make a choice as 
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soon as possible, and under these conditions one can 
observe the parietal and frontal networks converg-
ing towards choice. In other situations, however, the 
time-courses of valuation and choice are separable, as 
is more typically the case in human economic behavior. 
This suggests the existence of a circuit that can essen-
tially force the parietal networks towards convergence. 
Such a system would almost necessarily involve cortical 
networks of inhibitory connections, but the features of 
this process that decides when to choose remain com-
pletely absent from this standard back-pocket model. 

   Over the course of the past decade an extraordinary 
amount of progress has been made in identifying the 
basic features of the primate mechanism for choice, 
and there is remarkable consensus about much of this 
mechanism. This is a device that can be the subject 
of economic study, and the existing neurobiological 
data clearly identify some areas of economic theory as 
more relevant to the study of this device than others. 
The existing theory also identifies questions that must 
be answered by neurobiology. That, of course, is the 
whole point of this endeavor.  
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