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Bayer HM, Lau B, Glimcher PW. Statistics of midbrain dopamine
neuron spike trains in the awake primate. J Neurophysiol 98: 14281439,
2007. First published July 5, 2007; doi:10.1152/jn.01140.2006. Work in
behaving primates indicates that midbrain dopamine neurons encode a
prediction error, the difference between an obtained reward and the
reward expected. Studies of dopamine action potential timing in the alert
and anesthetized rat indicate that dopamine neurons respond in tonic and
phasic modes, a distinction that has been less well characterized in the
primates. We used spike train models to examine the relationship be-
tween the tonic and burst modes of activity in dopamine neurons while
monkeys were performing a reinforced visuo-saccadic movement task.
We studied spiking activity during four task-related intervals; two of
these were intervals during which no task-related events occurred,
whereas two were periods marked by task-related phasic activity. We
found that dopamine neuron spike trains during the intervals when no
events occurred were well described as tonic. Action potentials appeared
to be independent, to occur at low frequency, and to be almost equally
well described by Gaussian and Poisson-like (gamma) processes. Unlike
in the rat, interspike intervals as low as 20 ms were often observed during
these presumptively tonic epochs. Having identified these periods of
presumptively tonic activity, we were able to quantitatively define phasic
modulations (both increases and decreases in activity) during the intervals
in which task-related events occurred. This analysis revealed that the
phasic modulations of these neurons include both bursting, as has been
described previously, and pausing. Together bursts and pauses seemed to
provide a continuous, although nonlinear, representation of the theoreti-
cally defined reward prediction error of reinforcement learning.

INTRODUCTION

Over the past three decades, a significant amount of data has
been gathered about the spiking properties of midbrain dopa-
mine neurons. Intracellular recordings made from dopamine
neurons in rodent slice (Johnson et al. 1992; Kita et al. 1986),
studies of the intact anesthetized rodent (Grace and Bunney
1984; Kitai et al. 1999; Tepper et al. 1995), and studies of
awake behaving rodents (Freeman et al. 1985; Hyland et al.
2002) have all contributed to our understanding of the biophys-
ical properties of this system during both tonic and phasic
modes of activation (Grace 1991).

Recently, systems level studies of the activity of these
neurons in the awake behaving primate have begun to indicate
that phasic activity after a reward is systematically related to
the difference between the magnitude of behavioral reinforce-
ment received by the primate and the magnitude of the rein-
forcement that the primate is presumed to expect (Schultz
1998). At this level of analysis, there has been growing
evidence that transient increases in spike rate, the phasic bursts
that have been widely observed in the rodent preparation,
appear to continuously encode positively valued differences
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between the expected and obtained reward, the reward predic-
tion error (Bayer and Glimcher 2005; Morris et al. 2004;
Waelti et al. 2001). In a similar way, current evidence suggests
that reductions in baseline activity may be related to negatively
valued reward prediction errors (Hollerman and Schultz 1998;
Ljungberg et al. 1992), a feature consistent with temporal-
difference models of reinforcement learning (Montague et al.
1997; Schultz et al. 1997).

We were interested in using an existing database of dopa-
mine spiking patterns (Bayer and Glimcher 2005) to examine
the statistics of dopamine firing rates in the awake behaving
primate to ask three questions. /) How are the phasic responses
(both increases and decreases in activity) of these cells related
to the theoretically defined reward prediction error? 2) How do
the phasic modulations of these neurons by rewards relate to
the tonic and burst modes of activation observed in the rodent?
3) Do the statistics of action potential generation in the alert
animal support the notion that these cells can serve as pace-
makers as has been proposed in the rodent (Meck and Benson
2002)?

We therefore examined the spiking properties of midbrain
dopamine neurons while monkeys were learning, by trial-and-
error, when to make an eye movement to receive a fluid
reward. Within that context, we examined the properties of
dopamine spike trains under four conditions: after an auditory
tone that initiated each trial, while the animal was waiting to
make the eye movement, after the delivery of the reward, and
during an epoch measured between trials when no stimuli or
rewards were presented. The second and fourth conditions
were associated with continuous average levels of activity that
might be expected to reflect the tonic mode of activation that
has been observed previously in the rodent. The first and third
conditions were associated both with the existence of reward
prediction errors at a systems level and the generation of phasic
responses at a physiological level.

We began by quantitatively examining the interspike inter-
vals (ISIs) of dopamine (DA) neuron activity when no task-
related activation was expected, focusing our analysis on the
epoch between trials. We found that, during these intervals, the
neurons fired at a low continuous rate with moderate variabil-
ity. We saw little evidence either of strongly periodic behavior
(of the type observed in other known pacemaker circuits) or of
phasic modulations during these intervals. Our analysis of the
distribution of ISIs during tonic activity was more closely
matched to the irregular dopaminergic spike activity found in
anesthetized animals than the dopaminergic pacemaker activity
observed predominantly in vitro. Although DA neurons in the
awake primate do spike at reasonably regular intervals under
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these conditions, their ISIs were marginally better described as
Poisson-like (Gamma) than as Gaussian in their distribution.
Based on our analysis of this presumptively tonic pattern of
activation, we defined phasic modulations in activity as ISIs
above or below the 95% Cls observed during tonic activity. In
this way, we identified bursts of activity similar to those seen
in the awake behaving rat (Hyland et al. 2002). The frequency
and duration of these bursts was correlated with the magnitude
of a mathematically defined positive reward prediction error as
might be expected from previous work in the primate (Mire-
nowicz and Schultz 1994; Schultz et al. 1997; Waelti et al.
2001). We also, however, observed a pause in activity that
occurred on some trials that has been observed previously in
the primate (Hollerman and Schultz 1998; Ljungberg et al.
1992) but has received less attention than the burst response.
The durations of pauses in activity, periods during which the
neurons were completely silent, were also systematically cor-
related with a mathematically defined reward prediction error
(RPE), but in this case with negatively valued reward predic-
tion errors. These results suggest that the afferent inputs to the
DA neurons, which are known to be correlated with D1
receptor activity and that are known to control phasic bursting
(Floresco et al. 2003; Goto and Grace 2005; Grace 1991) may
also initiate pauses under some circumstances. Thus while we
observed both tonic and phasic patterns of activity, the phasic
pattern we observed included modulations of the durations of
pauses in activity, which is not a feature of existing reinforce-
ment learning models of dopaminergic activity.

METHODS

Two male rhesus macaques (Macaca mulatta) were used as sub-
jects. All animal procedures were developed in association with the
University Veterinarian, approved by the New York University Insti-
tutional Care and Use Committee, and designed and conducted in
compliance with the Public Health Service’s Guide for the Care and
Use of Laboratory Animals. All surgical and training procedures were
performed using standard protocols that have been described in detail
previously (Handel and Glimcher 1997). The database of spike pat-
terns analyzed here with regard to the statistics of neuronal action
potentials served as the subject of a previous report on reinforcement
learning (Bayer and Glimcher 2005).

Recording protocol

We used ultrasonography to place guide tubes and electrodes in the
ventral midbrain (Glimcher et al. 2001). Neurons at, or caudal to, the
anatomical location of the substantia nigra pars compacts (SNc), as
determined by ultrasonography, were classified as dopaminergic
based on three criteria: they had relatively long action potentials
(typically ~2 ms), their baseline firing rates were relatively low
(mean: 5.3 £ 1.5 spikes/s), and they had a phasic response to
unpredicted fluid rewards. A subset of these neurons, which were
typical of the population, were localized histologically to the SNc and
the ventral tegmental area (VTA).

To ensure that we had successfully isolated single neurons, we
visually assessed spike waveforms for identity before beginning data
collection and throughout the recording process. After all data were
collected, we created ISI histograms (ISIHs) and examined, for each
cell, the occurence of intervals below a conservative estimate (2 ms)
of the biophysical refractory period for these cells. Fifteen of the
neurons in our population had <0.1% of their observed ISIs shorter
than this interval. Because there were typically ~1,000-2,000 ISIs
per cell, this meant that in all likelihood there were less than one or

1429

two recorded action potentials of dubious provenance for each unit in
this group. We compared the ISI distributions for these very well-
isolated units to the ISI distributions for our entire population. For the
entire population, we observed <1% of the ISIs were <2 ms in any
unit studied, and on further analysis, we found no detectable differ-
ence in the ISI distributions for the population as a whole compared
to the 15 best isolated neurons.

Task

Monkeys were trained to perform a saccade timing task in which
they had the opportunity to learn, by trial-and-error, when to initiate
a saccade to an eccentric target without an external “go”-cue. Saccade
timing trials (Fig. 1) began after an intertrial interval of unpredictable
duration followed by an audible beep. Three hundred milliseconds
later, a central yellow light emitting diode (LED) was illuminated, and
the subject was required to align gaze with this stimulus (*3°) within
1,000 ms. Three hundred milliseconds after gaze was aligned with this
central LED, it turned red, and a single red eccentric LED was
illuminated at 10° of vertical elevation (the location of the target was
identical during all experiments). During the next 4 s, the subject
could initiate a saccade to the eccentric target at any time. After gaze
was shifted into alignment with the eccentric LED, the subject was
required to maintain gaze for another 250 ms. Both LEDs were
extinguished, and the subject either received a reward or not. How-
ever, a new trial would not begin until the 4-s interval was complete.

During each trial, the subject received a reward if he executed the
saccade during an unsignalled temporal window that was embedded in
the 4-s interval. From the beginning to the end of the window, the
volume of liquid reward that the animal could earn increased linearly;
thus the animal could maximize his reward by learning where the end
of this unsignalled window occurred and choosing to make his
saccade during that interval. The duration of the window was scaled
logarithmically as it was moved later in the trial. The temporal
position of the interval was shifted between blocks of trials in an
uncued manner (see Bayer and Glimcher 2005 for more details).

Data analysis

For each behavioral trial on which the animal made a saccade to
the eccentric target, we measured how long the animal waited to
make the saccade, the interval during which the saccade would be
rewarded, the volume of liquid reward that the animal received,
and the times at which action potentials occurred during four
intervals within the task: two intervals of presumptively tonic
activity and two intervals that included phasic activity (Fig. 1). The
tonic intervals were a 1,500-ms baseline period starting 800 ms
after the reward from the previous trial was delivered, and a
variable length wait period, starting with the onset of the eccentric
target, and extending until the saccade was initiated. The length of
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FIG. 1. Saccade timing task events and intervals presented as a function of
time. Each trial begins with a 300-ms warning tone marked beep. A fixation
target is illuminated for 300 ms after which a single eccentric target is also
illuminated for =4,000 ms. The monkey is free to make a saccade shifting gaze
to the eccentric target at any time during this interval. Depending on when the
monkey makes his eye movement, a reward of variable magnitude is delivered
after the eye movement is complete. An intertrial interval (variable length,
=4,000 ms) marked baseline ensues. Light gray bars mark intervals during
which tonic-related activity was measured. Dark gray bars indicate intervals
during which phasic activity was analyzed.
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the wait interval ranged from 300 to 3,000 ms, depending on how
long the animal waited to make the saccade. The phasic intervals
were a 500-ms beep interval starting at the time when an auditory
beep signaled the onset of the trial and a 500-ms reward interval
starting at the time when the eccentric target was extinguished (on
rewarded trials, this coincided with the onset of reward delivery).

To examine the statistical properties of DA neuron spike trains
during epochs of tonic firing, we first computed the time elapsed
between each spike collected during both the baseline and wait
intervals for each neuron. We constructed two ISIHs for each neuron:
one for each of these presumptively tonic intervals. To quantify these
distributions, we also computed the coefficient of variation (CV)
during both intervals, which was the ratio of the SD to the mean of the
ISI distribution. The CV provides a single-parameter estimate of the
variability of the neuronal spike train. A CV near 1 indicates Poisson-
like variability. A CV near 0.35 indicates highly regular spike trains
characteristic of previously described pacemaking systems.

We also characterized the underlying distribution from which the
ISIs appeared to have been drawn. To do this, we fit each empirical
ISI distribution with two different models: /) a two-parameter Gamma

distribution [f(xle,B) = x* 'e™f/(B°T(a))], and 2) a two-param-

eter Gaussian distribution [f(xlw,0) = e’(X””Z’Q"Z)/(U\/ZTT)]. The
Gamma distribution is commonly used to model ISI distributions (Brown
et al. 2003), and it includes the exponential distribution, which charac-
terizes a stationary Poisson process (a classic early model of the spike
generator), as a special case (o = 1). Unlike the exponential distribution,
the Gamma and the Gaussian distributions allow for varying periods of
inactivity in the neuron immediately after a spike. The parameters for
each model were fit using the method of maximum likelihood (gamfit and
normfit in Matlab), which yielded parameter estimates and the log-
likelihood evaluated at the model parameters.

We used Akaike’s information criterion (AIC; AIC = 2 X log-
likelihood — 2k, where k is the number of parameters) to compare
model fits (Brown et al. 2003; Burnham and Anderson 1998). We also
used the variance accounted for (VAF) by the models as an additional,
more intuitive, measure to compare the model fits [(Total variance in
the data — Residual variance not accounted for by the function)/Total
variance in the data].

We quantified regularities in the firing patterns of DA neurons
using autocorrelation functions. Previous studies have identified a
series of regular multiple peaks in the autocorrelation functions for
dopaminergic neurons in other preparations (Hyland et al. 2002;
Paladini and Tepper 1999; Shepard and German 1988; Tepper et al.
1995), evidence for clear periodicity in those spike trains. For each
cell in our database, we therefore computed an autocorrelation
function and performed the following two analyses on those
functions. First, we averaged together the autocorrelation functions
from individual trials to determine whether we could observe
consistent changes in the likelihood that an action potential would
occur immediately after an action potential had been generated (for
each neuron). This revealed, as we expected, a “quiet period” after
action potentials; a time during which spikes were unlikely to
occur. To quantify this quiet period, we measured the time it took
for each cell to return, after action potential generation, halfway to
the maximum probability of spike generation (observed for that
neuron). To do this, we smoothed the autocorrelation functions by
averaging them with a 25-ms sliding window that yielded a unique
“half-maximum” time for each function, an approach modeled
after a similar measure used in a previous report on DA neurons
(Wilson et al. 1977). Second, we used the best-fitting model for the
ISI distribution of each neuron to generate a predicted autocorre-
lation function under the assumption that the spikes were generated
as a renewal process; that is, ISIs were sampled independently and
identically from the best-fitting ISI distribution. For a stationary
renewal process, the autocorrelation can be calculated directly
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from the ISI distribution (Cox and Lewis 1966) for comparison
with the observed ISI distribution for that particular cell.

To better understand the properties of dopaminergic spike gen-
eration, we also assessed the goodness-of-fit of the Gamma and
Gaussian models using a test developed by Brown et al. (2001).
This allowed us to quantitatively determine whether the tonic
activity from DA neurons could be characterized as a renewal
process with ISIs that were either Gamma or Gaussian distributed.
Briefly, this approach to analyzing spike trains begins by noting
that a critical problem with traditional approaches (like the VAF
described above) is that those approaches are based on the notion
that the underlying variables are continuous measures—which is
not the case for spike trains. To engage this problem, Brown et al.
turned to the time-rescaling theorem, which states that any point
process, such as a Poisson process or a renewal process with
Gamma or Gaussian distributed ISIs, can be transformed through
its conditional intensity function into a realization of a Poisson
process with unit rate, meaning that the ISI distribution of this
rescaled process is exponentially distributed.

Second, and the critical step for our purposes, is that the theorem
allowed us to assess the goodness-of-fit of the Gamma and Gauss-
ian models for DA neurons. For each neuron, we used the best-
fitting Gamma (including the special case of an exponential density
for a Poisson process) and Gaussian models of the ISI distribution
to estimate a conditional intensity function assuming that the
observed spike times were generated from a fixed (stationary)
renewal process. We used the time-rescaling theorem to transform
the observed spike times through the estimated intensity functions
of the Gamma and Gaussian models. The ISI distribution of these
rescaled spike times will be exponentially distributed with unit rate
if the model fits the data. The critical step is to ask how closely
each of the estimated intensity functions comes to achieving this
exponential distribution. If any of the proposed models can achieve
that goal, the spike train under study can be well described as a
renewal process of that type. We can assess whether the Gamma or
Gaussian models achieved this by comparing the ISI distribution of
the rescaled spike times with an exponential distribution with unit
rate. In practice, we did this by first transforming the rescaled ISIs
such that, if they were exponentially distributed, they would be
now uniformly distributed over the range from O to 1. This means
that we can measure the goodness-of-fit by comparing the trans-
formed model of the observed data to a uniform distribution. We
did this graphically by plotting the sorted, transformed ISIs against
the theoretically defined cumulative distribution function of a
uniform density. If a model is correct, the points from this plot will
lie on the main diagonal of the graph, and deviations of this line
from the main diagonal indicate deviations of the observed spike
train from the best-fitting model of that type. Brown et al. referred
to these graphs as Kolmogorov-Smirnov (KS)-plots. We summa-
rized these KS-plots using the KS statistic (Press et al. 1992),
which measures the difference between two distributions and
ranges from O to 1: O indicating a perfect fit of the model to the
observed point process, and 1 indicating no fit.

Once we had characterized the patterns of activity observed during
the baseline period in each of these ways, we could ask whether
significant deviations from this pattern occurred at other times during
each trial, indicating the onset of what we defined as a phasic
modulation. We searched for phasic responses in each cell using the
distributional model that accounted for the most variance in that cell,
(in practice either a Gamma or a Gaussian distribution). To do this, we
set thresholds for ISIs that represented the upper and lower 95% Cls
of this distribution. We defined the onset of a burst as the occurrence
of two successive action potentials that were separated by an ISI
shorter than the lower threshold (mean of 33.3 ms and an SD of 27.3
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ms across our population).” We defined the offset of a burst as the last
spike that was preceded by an ISI shorter than the threshold. We also used
this method to identify pauses in the tonic activity of dopamine neurons.
Pauses were defined as two sequential action potentials separated by an
interval that was longer than the upper threshold (mean of 369.0 ms and
an SD of 103.3 across our population). Once we had identified bursts and
pauses during the beep and reward intervals that by definition included
behaviorally relevant events, we could correlate these phasic modulations
with regard to the relevant behavioral events.

Previously published results indicated that the average firing rate of
DA neurons after the delivery of a reward may reflect the difference
between the magnitude of the reward the animal has just received and
a weighted average of the magnitudes of the preceding rewards (Bayer
and Glimcher 2005; Schultz et al. 1997). More formally, this suggests
that the phasic modulations of DA neurons can be predicted from an
equation having the form

Average Firing Rate
= Rmostreceny — [(Roy X w_p) + (Ry Xwop) +.. .4 Ry X woy)]

where R, recent 15 the value of the most recently received reward,
R_, through R_ are the rewards on a set of previous trials, and w_
through w_, are the weights used to average these previous rewards.
Most theoretical models that have been used to account for the phasic
modulation (Rescorla and Wagner 1972; Schultz et al. 1997; Sutton
and Barto 1981) go a step further and suggest that the magnitude of
the weights should decline exponentially if these neurons participate
in reinforcement learning.

As in our previous study (Bayer and Glimcher 2005), we computed
the empirical reward prediction error function for the neurons, which
is the empirical function that predicts average DA firing rate during
the postreward interval from the history of reward magnitudes over
the past 10 trials, using a linear regression on recent rewards to predict
firing rate during the first 500 ms of the reward interval.? The linear
regression thus provided a set of weights taking the following form

Bo X (R) + B X (R—)) + By X (Ri—2) +...+ Big X (R o)

Where R, is the amount of fluid reward provided on the current trial and
takes a positive value, R,_, is the amount of reward obtained on the
previous trial taking a negative value, and so on with all remaining
coefficients (the B-weights) taking a negative value. Note that the regres-
sion does not require that these terms take values having these particular
signs, but if the coefficients construct a reward prediction error they must
do so. In practice, the negative sum of B, X (R,_,) + B, X (R,_,) +...+
Bio X (R._ o) is found to be equal to B, X (R, for the neurons we have
studied. The regression thus yielded a set of 8 values defining the best
linear rule for predicting the firing rate of the DA neurons from the recent
history of rewards. We have previously shown that the weighting func-
tion derived in this way almost perfectly approximates the exponentially
weighted average of the theoretically defined reward prediction error and
does so without making any other assumptions than linearity (for more
details on this approach to the reward prediction error, see Bayer and
Glimcher 2005).

! Previous studies in the rat (Grace and Bunney 1984) have often defined a
burst as two or more spikes having an ISI of <80 ms and in which the
amplitude of subsequent spikes declines. Our goal here was not to precisely
replicate that measure but rather to identify phasic modulations that reflected
a transient and statistically significant deviation from the baseline tonic activity
of each neuron. In practice, the bursts we describe here would all have been
identified using this more classical measure, although many more bursts would
have been defined with the classical 80-ms measure derived from study of the
rodent than with our approach in these primate data.

2 We selected 500 ms for consistency with our previous work and because
a 500-ms period encompasses the longest pauses we observed. In practice, the
exponentially declining beta weights we observed are fairly robust to measured
interval duration as indicated by the analysis of longer reward intervals
presented in the results section.

1431

We constructed ISIHs during the beep and reward intervals that
were segregated by reward prediction error to confirm that there were
differences in the general distribution of ISIs resulting from the
differences in average firing rate observed previously. Finally, we
computed three different characteristics of phasic activity on all
identified pauses and bursts: the number of spikes per burst, burst
latency, and pause duration. This allowed us to examine the relation-
ship between these variables and reward prediction error.

Population level analysis

To compare the characteristics of phasic activity across the entire
population of neurons, we normalized the results for each cell according
to the range of responses observed in that cell. Relative burst size was
computed by dividing the actual burst size by the mean burst size
observed for all bursts recorded from the same neuron. Relative pause
duration and relative burst latency were computed the same way; the
temporal interval observed on each trial was divided by the mean pause
duration or burst latency (respectively) observed for that cell. This
allowed us to determine whether there were changes in the characteristics
of phasic activity across the entire population of neurons.

RESULTS
Tonic activity

To ensure that the baseline and wait intervals did, in fact,
represent periods when there were no significant task-related
phasic modulations in neuronal activity, we constructed perievent
time histograms for each cell. For each neuron, four histograms
were generated: two during the baseline period, one aligned to the
time at which the reward was delivered and the other to the end of
the trial, and two during the wait period, one aligned to the
illumination of the eccentric target and the other to the offset of
the target. Figure 2 plots these histograms for a single typical
neuron. This pattern of results was observed in all of our neurons,
suggesting that the average firing rate during these intervals did
not include phasic modulations of the neurons triggered by affer-
ent input linked to task events. This was a prerequisite for the
following analysis of spiking that presumes the activity during
these periods was largely stationary in nature.

Figure 3, A and B, shows the distributions of ISIs we observed
for a single neuron during the baseline and wait periods, respec-
tively. Both distributions have a central peak at ~144 ms and drop
off at the same rate for larger and smaller ISIs. Note that the
distribution includes many ISIs <80 ms, the classical threshold
beneath which a pair of spikes can be considered for categoriza-
tion as a burst in the rodent (Grace and Bunney 1984). The
distribution of ISIs during the baseline and wait intervals for a
second cell are shown in Fig. 3, C and D. To characterize the
variability of ISIs observed across our population, Fig. 3, E and F,
plots the observed CVs for each neuron during the baseline and
wait intervals, respectively. To further quantify the distribution of
ISIs observed during baseline firing in our neurons, we fit the
baseline ISIH of each neuron with both a Gaussian density and a
Gamma density.3 Figure 4, A and B, shows the ISIHs of the
example cells from Fig. 3, A and B, with both the best fit Gaussian
function and the best fit Gamma function. The distribution of ISIs
for cell 1 was slightly better described by a Gaussian function,
although the difference in terms of variance accounted for was
only ~3%. Figure 4B shows the ISIH and best-fitting functions
based on the data from the second example cell from the previous

3 An analysis of the wait interval, not shown here, yielded a similar result.
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FIG. 2. Perievent time histograms aligned to start and end of baseline and

wait intervals for a single neuron. Mean and SE are plotted for each 20-ms bin;
1,024 trials were used to compute these histograms. Flat histograms indicate
that no task-related phasic activity occurred during these intervals.

figure. This cell was better described by a Gamma function,
although again, the difference in variance accounted for was quite
small, only ~2%.

To examine whether the Gamma function accounted for
significantly more variance than the Gaussian function for
every cell in our population, we computed the difference in
variance accounted for by the two fits as a function of the total
variance accounted for by both fits and used AIC to determine
which model better described the data. Figure 4C plots a
histogram of the difference between the AIC for the Gamma
distribution minus the AIC for the Gaussian distribution. Note
that most cells were better described by the Gamma distribu-
tion. To further examine this difference, Fig. 4D plots the
variance accounted for by each model, for each cell. Gray
points identify neurons better fit by the Gamma distribution
according the AIC used in Fig. 4C. Note that these two
measures largely agree, but much more important is the obser-
vation that both models fit all cells quite well. In summary,
these data suggest that, in the awake-behaving monkey, more
cells were fit better by a Gamma function than by a Gaussian
function, but this difference was very small.

Figure 5, A and B, shows the distribution of parameters for
the Gaussian models that best fit the data. The average mean
was 175 = 34 ms, and the average SD was surprisingly broad
at 107 = 36 ms. Figure 5, C and D, shows the parameters of the
Gamma functions that best fit the neuronal data.

We also examined the patterns of sequential spike generation in
our neurons by computing autocorrelation functions during the
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baseline period. Figure 6, A and B, shows the autocorrelation
functions for two example cells in gray. These functions show a
very low probability of spike generation immediately after a
spike, which gradually increased until it reached a maximum
probability of spike generation about 100—140 ms later. The black
lines show analytically derived autocorrelation functions for the
best-fitting Gamma and Gaussian functions for these two neurons.
Note that, as in Fig. 4, cell 1 appears better described by a renewal
process with Gaussian distributed ISIs and cell 2 appears better
described by a renewal process with Gamma distributed ISIs.
Note that neither of these autocorrelation functions shows the
oscillatory pattern of correlations that are evidence of an under-
lying periodic process as has been observed in some rodent
dopamine neurons (see Fig. 3C of Hyland et al. 2002 for an
example of this). We saw no evidence in our population of regular
firing cells with strong multiple peaks in the autocorrelation
functions. Figure 6C plots the time to half-maximum for each
neuron in our population. The time to half-maximum is the
interval required after a spike for the autocorrelation to rise to one
half its maximum value. This is the interval required for the
probability of spike generation to rise to 50% of maximal prob-
ability. The average across the population is 106 ms. Figure 6D
plots, for the best-fitting model of each cell (Gamma or Gaussian,
by AIC), the correlation between the observed and analytically
derived autocorrelation functions. Again note that the models do

A

0.25

Baseline B Wait

Cv=0.33

Cell #1
Proportion Observed

200 400

C 1SI (msec)

200 400
ISI (msec)

O-

CVv=0.40 CV=0.50

Cell #2
Proportion Observed

200 400
1Sl (msec)

200 400
ISI (msec)

Mo

Population
Number of Observations

0
0 0.5 1 0 0.5 1

Coefficient of Variation Coefficient of Variation
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histogram for example neuron 1 during baseline interval. B: ISI histogram for
example neuron 1 during wait interval. C: ISI histogram for example neuron 2
during baseline interval. D: ISI histogram for example neuron 2 during wait
interval. E: distribution of CV for all cells during baseline interval (mean =
0.61, SD = 0.16). F: distribution of CV for all cells during wait interval
(mean = 0.62, SD = 0.15).
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neurons.

To further assess the accuracy of the Gaussian and Gamma
models for these neurons, we plotted KS plots of our neurons
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FIG. 4. Fitting a model to the ISI histogram (ISIH). A: ISTH
for example neuron 1 (from Fig. 3) plotted in gray, with
best-fitting Gaussian and Gamma distributions plotted on top in
dashed and solid lines, respectively. The numbers give the VAF
for each model. B: ISIH for example neuron 2 plotted in gray,
with best-fitting Gaussian and Gamma functions plotted on top
in dashed and solid lines, respectively. C: histogram of differ-
ences in Akaike’s information criterion (AIC) scores across
population. D: variance-accounted-for by each model. Neurons
for which the Gamma model was a better fit (smaller AIC score)
are shaded gray. Gaussian and Gamma models both fit the data
reasonably well.

using the methods of Brown et al. (2001; see METHODS). Figure

7, A and B, shows these plots for two example cells. We used
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FIG. 6. Autocorrelation analysis. A: gray line is autocorre-
lation function for example neuron 1 (from Fig. 3) estimated
from data during baseline interval (1-ms binning). Dashed and
solid black lines are the autocorrelation functions predicted by
a renewal process with either a Gaussian or Gamma IST distri-
bution obtained by fitting these distributions to observed ISIs.

For this neuron, the simple renewal model with a Gaussian ISI
distribution produces an autocorrelation function very similar to
that observed in the actual neuron. B: autocorrelation function
for example neuron 2 during baseline interval. C: histogram of
time to half-maximum autocorrelation values for all neurons
during baseline period (mean = 106, SD = 59). D: for each
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characterized the spike trains of individual neurons. The close-
ness with which the line for a given model approximates the
main diagonal is a measure of the goodness of fit for that
model. Note that as in our previous analyses, cell 1 is better
described as Gaussian and cell 2 as Gamma. Figure 7C quan-
tifies this across the population using a KS statistic. Values of
0 indicate a perfect fit between the model and the data. Note
that across our population, we once again observed a better fit
of the Gamma functions, but Gaussian functions also do a good
job of describing the data for some neurons.

Phasic activity

The activity we observed during the baseline and wait
intervals thus appeared to be reasonably well described by
simple stochastic models in which all spikes were independent
events and were not associated with afferent activity triggered
by task events. These are properties we take to be characteristic
of the tonic activity studied by other researchers in rodent DA
neurons. To search for phasic events during our reward and
beep intervals, we therefore used a simple statistical criterion.
Any consecutive ISIs that lay below the lower 95% CIs of the
modeled distribution for that neuron were labeled bursts, and
any interval that lay above the 95% CI was labeled a pause.

Figure 8A shows the results of our burst/pause detection algo-
rithm for a single neuron. Plotted in black are the times at which
individual spikes occurred with respect to the time at which a
task-associated reward was delivered, and plotted on top of those
in gray are the intervals that were identified as bursts (plotted in
thick gray bars) or pauses (plotted as thin black bars). Trials are
sorted by the magnitude of the reward prediction error, as mea-
sured on that trial, based on an analysis of the firing rate and the
reward history associated with that particular neuronal recording
session. At very negative reward prediction errors, the neuron
clearly paused on most of the trials we recorded, whereas at very

0.6
Correlation of fit and data

neuron, we compared observed autocorrelation with the auto-
correlation function predicted by a renewal process with best-
fitting ISI distribution for each neuron. These comparisons were
summarized using a correlation coefficient obtained from time
shifts 1-400, excluding time 0. This figure plots the distribution
of correlation coefficients we observed for all neurons in our
population during the baseline interval.

0.8 1

positive reward prediction errors, the cell exhibited a burst of
action potentials. Stars mark trials in the upper half of the figure
where the neuron paused despite a positive reward prediction
error. Stars mark trials in the lower half of the plot where bursts
occurred under conditions of a negative reward prediction error.
These data indicate that this neuron shows two forms of phasic
modulation correlated with the empirically defined reward predic-
tion error: both bursts and pauses.

Figure 8, B-F, shows the distribution of ISIs observed
during the bursts that followed the trial initiating beep and the
reward. After the beep, there was a shift in the ISI toward the
left, with an average ISI of 48 ms and a CV of 0.26. During the
postreward bursts, there was also a leftward shift in the ISI
distribution, which was correlated with the reward prediction
error. The mean ISI duration for bursts associated with large
positive reward prediction errors was only 28 ms, whereas the
mean ISI duration associated with smaller reward prediction
errors was 49 ms (comparable with the responses after the
beep). Unexpectedly, the responses associated with slightly
negative reward prediction errors (Fig. 8E) showed a biphasic
distribution of ISIs, as the neuron sometimes responded with a
very short burst (mean of short ISIs = 48 ms) and sometimes
with a short pause (mean of long ISIs = 284 ms).* For very
negative reward prediction errors, however, the neuron always
responded with a pause in activity (mean ISI = 339 ms).

4 Before drawing any conclusions from this bimodal distribution about the
underlying neuronal representation of predicted reward magnitude, it should be
bourne in mind that this bimodal distribution may simply reflect a limitation of
our algorithm for estimating the reward prediction error encoded by firing rate
of the dopamine neurons. If positive and negative reward prediction errors are
encoded differently (nonlinearly) by the dopamine neurons, a misidentification
of the zero-point in the reward prediction scale might result. In fact, one
might expect precisely such a misidentification from our linear regression if the
true encoding of reward prediction error by dopamine neurons shows a
nonlinearity that favors positive reward prediction errors.
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FIG. 7. Goodness-of-fit. We assessed how well different models fit data
using the method proposed by Brown et al. (2001). A: model quantiles plotted
against predicted quantiles for example cell 1 (from Fig. 3) from data during
baseline interval. Thin gray line is the unity line; any empirical comparison that
runs along this line indicates a perfect fit of that model to data. Dotted, dashed,
and solid black lines represent model quantiles predicted by stationary renewal
models using Exponential, Gaussian, and Gamma ISI distributions, respec-
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ian = 0.033, and Gamma = 0.041. B: model quantiles plotted against predicted
quantiles for example cell 2. KS-statistics are Exponential = 0.224, Gauss-
ian = 0.140, and Gamma = 0.022. C: boxplots of the K-S statistic for the
population. KS-statistic encapsulates how well each model fits data by essen-
tially reporting maximum vertical distance of empirical curves in A from main
diagonal. KS-statistic of O indicates a perfect fit. Horizontal notches indicate
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To better quantify the relationship between both types of
phasic neuronal activity and the reward prediction error, Fig.
9A plots the number of spikes in the burst as a function of
reward prediction error for our two example cells. For both
cells, there is a relatively linear relationship between the
number of spikes in the burst and reward prediction error over
the limited range of reward prediction error for which bursts
occurred. We plotted the duration of the pause during trials
when the received reward was less than the expected reward
(Fig. 9B). We found that the pauses in activity were longer for
more negative reward prediction errors, with a range of ~100
ms and this relationship was largely linear over the limited
range at which bursts did not occur. We also plotted the latency
to burst onset as a function of reward prediction error for both
of these individual neurons (Fig. 9C) and found that larger
reward prediction errors were generally associated with earlier
burst onsets, but only with about a 30-ms difference between
the earliest and the latest burst and with a function that has a
step-like quality for these neurons.

Figure 10 shows the same measurements plotted for the
entire population. Figure 10A plots the relationship between
relative burst size and reward prediction error. As observed in
the example neurons, the increases in reward prediction error

1435

are generally correlated with increases in burst size (Spearman
rank correlation, r, = 0.30; P < 0.001). Figure 10B indicates
that pause duration was also associated with changes in reward
prediction error. More negative reward prediction errors elic-
ited longer pauses (r, = —0.21; P < 0.001). Finally, the most
positive reward prediction errors were not associated, at the
population level, with a decrease in the delay before the burst
(P > 0.10; Fig. 10C). Taken together, these results suggest that
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positive or negative prediction errors, respectively, are marked with an asterisk
at the right of plot. B: ISI histograms for intervals identified as phasic activity
after trial-initiating beep. According to most models, these intervals should be
associated with positive reward prediction errors. C—F: ISI histograms for
phasic modulations during reward intervals sorted by magnitude of measured
reward prediction errors. Very positive reward prediction errors (RPEs) cor-
respond to trials with RPEs > 0.1 (73 trials). Slightly postive RPEs correspond
to trials with RPEs = 0 and <0.1 (359 trials). Slightly negative RPEs
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FIG. 9. Burst characteristics plotted as a function of reward prediction error
for two example neurons, on the left for example neuron 1 and on the right for
example neuron 2 from Fig. 3. A: mean burst size (number of spikes per burst)
plotted as function of reward prediction error with SE bars (left, example
neuron 1; right, example neuron 2). B: mean pause duration plotted as a
function of reward prediction error with SE bars (left, neuron 1; right, neuron
2). C: mean burst latency plotted as a function of reward prediction with SE
bars (left, neuron 1; right, neuron 2).

both classes of phasic activity, bursts and pauses, are correlated
with the history of rewards encountered by the animal, a signal
presumably carried by afferent inputs to these neurons.

To further explore the relationship between bursts and
pauses, we plotted average firing rate (which would reflect both
increases and decreases in activity) as a function of the reward
prediction error during postreward intervals of different length
(Fig. 11). If we set the interval to the length of the longest burst
we observed, this function should approximate the steepest
possible slope for positive reward prediction errors. If the
interval was set to the longest pause we observed, the function
should approximate the steepest possible slope for negative
reward prediction errors. To perform this analysis, we therefore
selected postreward intervals of 150, 200, 400, and 600 ms and
empirically derived reward prediction error functions for each
duration (as in Bayer and Glimcher 2005). Figure 11A plots the
relationship between the reward prediction error and firing rate
for each of these interval durations. Figure 11B plots the
weighting function derived from an analysis of that interval.
Note that the relationship between firing rate and the reward
prediction error remains nonlinear regardless of the duration
over which spikes are averaged. This suggests a discontinuity
between bursts and pauses with regard to the linear encoding of

H. M. BAYER, B. LAU, AND P. W. GLIMCHER

previous rewards by spike rate during any fixed postreward
interval, the standard measure used in most models of the
reward prediction error term.

Finally, we also hoped to determine whether the character-
istics of the phasic modulations observed during the reward
interval were related to the tonic firing rates of the cells before
the delivery of the reward on that trial. This serves as a test to
examine the degree to which the underlying state of the neuron
influenced ongoing spike rate. Figure 12 plots the mean and SD
of firing rate during the baseline interval of each trial (for all
neurons) as a function of mean firing rate during the reward
interval on that same trial. Note that there is a significant, but
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J Neurophysiol « VOL 98 « SEPTEMBER 2007 « WWW.jn.org
Downloaded from www.physiology.org/journal/jn at New Y ork Univ (128.122.114.057) on March 14, 2019.



DOPAMINE SPIKE STATISTICS

A Firing Rate vs. Reward Prediction Error B

1437
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FIG. 11. A: average firing rate as a func-
tion of reward prediction error during pos-
treward intervals of different lengths. B:
best-fit weighting functions from which re-
ward prediction error used on the lower axis
of A was derived. See Bayer and Glimcher
(2005) for more details on this function.
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very small, relationship between these variables. These data
suggest that the prior tonic state of the neurons, their ongoing
level of excitability, contributes weakly, but significantly, to
the phasic responses of these cells in this task.

DISCUSSION

We studied midbrain DA neurons during two intervals that
might be expected to contain tonic activity: one occurring between
trials of an experimenter-controlled task and the other occurring
while the animal was waiting to make an eye movement for a
juice reward. We examined the statistics of sequential ISIs during
these epochs by computing the CV. We also used autocorrelation
analyses to measure the level of rhythmicity in the sequential
process of spike generation. For all of our neurons, we found that
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FIG. 12. Relationship between phasic modulation and spike rate during the
immediately preceding baseline interval for all trials and all neurons. Mean and
SD of firing rates are plotted, on a trial-by-trial basis, during sequential
baseline and reward (150-ms duration interval from Fig. 11) intervals. R> =
0.05, P < 0.0001, n = 15641. Best-fitting line: y = 0.065x + 4.86.

Trial number

during both epochs, the CV was significantly <1 (averaging
~0.6) and that, although the autocorrelograms showed a reduced
likelihood of firing during an extended interval (on the order of
100 ms) after the occurrence of each action potential, there was no
significant evidence for nonindependence of ISIs during these
epochs in any of the analyses that we performed. Our results are
compatible with the conclusion that activity during these intervals,
which have been previously studied in the monkey (Bayer and
Glimcher 2005; Hollerman and Schultz 1998; Ljungberg et al.
1992; Morris et al. 2004; Waelti et al. 2001), largely represents the
tonic activity that has been observed in the rodent system. It
should, however, be noted that we did not observe the highly
rhythmic pacemaker mode that has occasionally been observed in
that system (Grace and Bunney 1984; Hyland et al. 2002; Silva
and Bunney 1988).

We were able to use the distributional analyses of this
presumptively tonic activity to define phasic activity as any
group of spikes separated by an ISI that was significantly
shorter or longer than average, using a 95% CI as we observed
it in this system. We found that DA neurons both bursted and
paused (with ISIs of =350 ms) in a manner correlated with the
subject’s recent reward history. Furthermore, the firing rates
we defined as phasic occurred along a continuum that ranged
from long pauses to short pauses to short bursts to long bursts.
The neurons thus appeared to deviate from tonic levels of
activity in a continuous fashion either by increasing or decreas-
ing spike generation rates as has been previously suggested
(Waelti et al. 2001).

The relationship between bursts and pauses was, however,
nonlinear with regard to average spike rates during a fixed
postreward interval and the reward prediction error. Average
firing rates during fixed intervals short enough to capture bursts
could not be described as linear with regard to both positive
and negative reward prediction errors simultaneously, although
the encoding of reward prediction errors by bursts or pauses
individually could be described as largely linear. Thus the
onset, duration, and magnitude of the phasic modulation of
dopamine neurons are all correlated with reward prediction
error, a result that expands significantly on previous findings
(Nakahara et al. 2004; Satoh et al. 2003; Schultz et al. 1997,
Waelti et al. 2001).
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Reward prediction errors and phasic activity

Central to our understanding of the function of midbrain DA
is that these neurons appear to operate in two modes: a burst,
or phasic, mode and a tonic mode. This distinction arises from
a broad array of studies that have identified pharmacological,
biophysical, and anatomical distinctions between these two
modes and which posit different roles for these two modes in
the control of behavior. Previous studies in the rodent, for
example, have associated bursts with D1 receptor family acti-
vation (Goto and Grace 2005), the stimulation of NMDA
receptors (Johnson et al. 1992), postsynaptic effects on synap-
tic strength (Goto and Grace 2005; Lisman and Grace 2005),
and modulation of hippocampal activity (Goto and Grace
2005). In contrast, tonic activity in these neurons is believed to
reflect D2 receptor activation, activity in the prefrontal cortex,
and a presynaptic mechanism for the modification of synaptic
strength (Lisman and Grace 2005). These data and others have
led to the proposal of a phasic/tonic model for dopaminergic
activity (Grace 1991). In this model, prefrontal mechanisms
regulate the baseline of tonic activity in these neurons which
controls, through homeostatic mechanisms, the overall phar-
macologic sensitivity of the dopaminergic targets. Other sys-
tems linked to areas like the hippocampus are proposed to
govern the phasic activation of this system in a way that
regulates learning.

In comparing the statistics of dopaminergic phasic activity in
awake primates with the activity of dopaminergic neurons in
rodents, we found many similarities that support the impor-
tance of these distinctions in the awake-behaving primate.
However, we also found that there were some apparent differ-
ences between the phasic mode that has been previously
reported in the rodent and the reward-related phasic modula-
tions that both we and others working in the monkey have
observed. We observed both pauses and bursts during phasic
modulations, and both pauses and bursts were related to the
recent reward history of the animal. When the most recent
reward received by the animal was more than the average of
recent rewards, the neurons responded with a burst of action
potentials. When the recent reward was smaller than this
average, the neurons paused. Our results thus support the
hypothesis that phasic modulations in DA firing rate are driven
by reward-sensitive afferents, but extend that hypothesis to
include brief pauses in activity.

Previous results, however, have suggested that the average
spike rates of DA neurons during a postreward interval of fixed
length may encode a wider range of positive reward prediction
errors than negative reward prediction errors (Bayer and Glim-
cher 2005; Satoh et al. 2003). This effect emerges largely from
the fact that the baseline firing rates of the neurons are so low.
These dopamine neurons can increase their firing rate by a
factor of 10 or more but can only decrease their firing rate by
a few hertz before reaching a rate of 0 during fixed postreward
intervals of limited length. Our finding that pause duration is
correlated with negative reward prediction errors suggests the
possibility that negative reward prediction errors may be en-
coded by these neurons for lower values of the reward predic-
tion error than had been previously suspected. In interpreting
this finding, it is critical to note, however, that the reward
prediction errors encoded by bursts and pauses are not linearly
related by average firing rate during fixed intervals short
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enough to detect postreward bursts. With regard to firing rate
during fixed intervals of the type usually described in the
literature, positive reward prediction errors are encoded with a
much steeper slope than are negative reward prediction error
and the inflection in this slope seems to occur at or near the
zero point at which predicted and obtained reward are identi-
cal. This is an observation that may support the suggestion of
Daw et al. (2002) that DA is only one of two neural systems
carrying information about reward prediction errors. On the
other hand, the observation that the postreward pause duration
of these neurons does encode the negative reward prediction
error may mitigate against this conclusion.

Our data, however, do not seem to support the notion that
these neurons serve as pacemakers in the awake-behaving
primate. An analysis of the ISIHs, the CVs, and the autocor-
relation functions for this population of neurons indicates that
this is unlikely. Our data cannot rule out the possibility that
other primate DA neurons have these properties but neither
does our small sample provide evidence for the existence of
pacemaking neurons in this species.

Summary

The results reported in this paper suggest a specific relation-
ship between the phasic modulations of DA cells and reward
prediction errors. Bursts in activity appear to encode positive
prediction errors and pauses in activity of =350 ms appear to
encode negative errors. Both of these classes of modulation
may well be compatible with existing models of phasic activ-
ity. The tonic activity we observed, while broadly similar to
that observed in the rodent, did show some differences. If, as
we propose here, the baseline and wait period activity we
measured constitutes tonic activity, the range of frequencies
that constitute tonic activity in the monkey may be broader
than that observed in the rat. Our ISIHs indicate that, under
these conditions, ISIs <80 ms were extremely common and
occurred stochastically throughout our tonic interval, despite
the fact that ISIs <80 ms in duration have been used, in
combination with other criteria, to define bursting activity in
many rodent preparations. Finally, we found no evidence for a
repetitive firing pacemaker mode in any of the neurons we
examined.
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