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We studied the choice behavior of 2 monkeys in a discrete-trial task with reinforcement contingencies
similar to those Herrnstein (1961) used when he described the matching law. In each session, the
monkeys experienced blocks of discrete trials at different relative-reinforcer frequencies or magnitudes
with unsignalled transitions between the blocks. Steady-state data following adjustment to each
transition were well characterized by the generalized matching law; response ratios undermatched
reinforcer frequency ratios but matched reinforcer magnitude ratios. We modelled response-by-
response behavior with linear models that used past reinforcers as well as past choices to predict the
monkeys’ choices on each trial. We found that more recently obtained reinforcers more strongly
influenced choice behavior. Perhaps surprisingly, we also found that the monkeys’ actions were
influenced by the pattern of their own past choices. It was necessary to incorporate both past reinforcers
and past choices in order to accurately capture steady-state behavior as well as the fluctuations during
block transitions and the response-by-response patterns of behavior. Our results suggest that simple
reinforcement learning models must account for the effects of past choices to accurately characterize
behavior in this task, and that models with these properties provide a conceptual tool for studying how
both past reinforcers and past choices are integrated by the neural systems that generate behavior.
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_______________________________________________________________________________

Much of our understanding of choice
behavior comes from the rich body of research
using concurrent schedules of reinforcement
like those Herrnstein used to describe the
matching law (Herrnstein, 1961). Neuroscien-
tists studying the biological mechanisms of
choice behavior are poised to take advantage
of the techniques and results that have been
developed from studies on matching behavior
(reviewed in Davison & McCarthy, 1988; de
Villiers, 1977; B. Williams, 1988). However,
monkeys are commonly used as subjects in
neuroscientific research, but they are rarely
used as subjects in matching experiments, and
the behavioral research that has been done
with monkeys (Anderson, Velkey, & Woolver-
ton, 2002; Iglauer & Woods, 1974) differs in

a number of procedural details from the
behavioral methods used in neuroscience. In
neurophysiological experiments, monkeys are
head-restrained to allow for stable electrophys-
iological recordings, eye movements rather
than arm movements are often used as a re-
sponse measure, individual responses occur in
discrete-trials to allow for precise control of
timing, and water rather than food is used as
a reinforcer to minimize recording artifacts
caused by mouth movements. And perhaps
most importantly, the reinforcement contin-
gencies differ from the concurrent variable-
interval (VI) schedules used to study matching
behavior (but see Sugrue, Corrado, & News-
ome, 2004). These differences make it difficult
to relate monkey choice behavior as described
by neuroscientists to the existing literature on
the matching law.

One of our goals in the present study was to
rigorously characterize the behavior of mon-
keys using apparatus typical of neurophysio-
logical experiments while they performed
a repeated choice task with reinforcement
contingencies similar to the concurrent VI VI
schedules used to study matching behavior.
We used a discrete-trial task where the
probability of reinforcement for choosing
a particular alternative grows with the number
of trials spent not choosing that alternative,
similar to the exponential growth obtained
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with constant-probability VI schedules (e.g.,
Houston & McNamara, 1981; Staddon, Hin-
son, & Kram, 1981). And like concurrent VI VI
schedules, this method of arranging reinforc-
ers renders exclusive choice of an alternative
suboptimal for maximizing reinforcer rate
because at some point the probability of
reinforcement of the unchosen alternative
exceeds that of the chosen alternative. In fact,
for tasks like ours, maximizing reinforcer rate
is closely approximated when subjects match
the proportion of choices allocated to an
alternative to the proportion of reinforcers
received from choosing it (Houston & McNa-
mara, 1981; Staddon et al., 1981). This also is
true of concurrent VI VI schedules (Staddon &
Motheral, 1978), and allows us to compare our
results with previous work on the matching
law.

Classic descriptions of choice relate behav-
ioral output, typically measured as the long-
term average ratio of choices, to average
reinforcer input, typically measured as the
long-term average ratio of reinforcers. The
strict matching law equates these two quanti-
ties; the relative number of choices matches
the relative reinforcer frequency (Herrnstein,
1961). This description has been extended to
include other reinforcer attributes such as
magnitude, delay, and quality (reviewed in
Davison & McCarthy, 1988; de Villiers, 1977; B.
Williams, 1988), and generalized to account
for deviations from strict matching (Baum,
1974). The generalized matching law for
reinforcer frequency and magnitude assumes
that these attributes have independent effects
(Baum & Rachlin, 1969), but allows for
differential levels of control by each variable;

C1

C2
~c

R1

R2

� �a M1

M2

� �b

, ð1Þ

where C, R, and M denote the number of
responses, number of reinforcers, and re-
inforcer magnitude for each alternative, re-
spectively. The coefficients a and b relate the
ratio of responses to reinforcer frequency and
magnitude, and are interpreted as sensitivity to
each variable, whereas c is a constant bias
towards one alternative not related to re-
inforcer frequency or magnitude.

The generalized matching law describes an
enormous amount of data collected from
many species (de Villiers, 1977), and allows

one to predict average choice behavior under
different conditions, such as for arbitrary
combinations of reinforcer frequency and
magnitude. However, the generalized match-
ing law does not specify how animals produce
matching behavior at a response-by-response
level. As such, the generalized matching law is
less useful for making neurophysiological
predictions because it does not constrain how
neural activity should vary on a response-by-
response basis. For neurobiological studies,
a model of performance that specifies the
computations performed by animals when
allocating behavior would be of tremendous
value because interpreting neural data often
requires understanding how choices are pro-
duced. Ideally, such a model would furnish
response-by-response estimates of the underly-
ing decision variables (e.g., reinforcer rate)
that predict the animal’s choices. Measure-
ments of brain activity then can be correlated
with these theoretical variables to determine
whether they predict brain activity as well as
choice (e.g., O’Doherty et al., 2004; Platt &
Glimcher, 1999; Sugrue et al., 2004).

Within psychology, a number of theoretical
models have been formulated to explain
matching behavior (B. Williams, 1988). Some
of these models make predictions at the
response-by-response level (e.g., momentary
maximizing, Shimp, 1966), and considerable
effort has been devoted to dissecting the local
structure of choice to select amongst these
different response-by-response models. Many
of the analytical methods used to understand
how local variations in behavior lead to
matching can be broadly categorized as re-
lating local variations in behavior to (a) local
variations in reinforcer history or (b) local
variations in behavioral history itself. Examples
of the first class include transfer function
formulations used by Palya and colleagues
(Palya, Walter, Kessel, & Lucke, 1996, 2002;
see McDowell, Bass, & Kessel, 1992, for
a theoretical exposition in a behavioral con-
text) to predict response rate using weighted
sums of past reinforcers. Related techniques
have been applied to predict choice allocation
in concurrent schedules on short time scales
(response-by-response, Sugrue et al., 2004) as
well as longer time scales (within and between
sessions, Grace, Bragason, & McLean, 1999;
Hunter & Davison, 1985; Mark & Gallistel,
1994). An example of the second class of
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techniques is estimating the probability of
a particular choice conditional on a specific
sequence of past choices, which can reveal
the types of strategies animals use under
different reinforcement conditions (e.g., Hey-
man, 1979; Nevin, 1969; Shimp, 1966; Silber-
berg, Hamilton, Ziriax, & Casey, 1978). Al-
though it is conceptually useful to separate the
effects of reinforcers and the potentially in-
trinsic response-by-response patterning of be-
havior (e.g., tendencies to generate particular
sequences of behavior), behavior generally
represents some combination of these two
(Davison, 2004; Heyman, 1979; Palya, 1992).
This suggests that analyses of reinforcer effects
or sequential choice effects in isolation may
not have a straightforward interpretation.
Consider a situation in which an animal strictly
alternates between two choice options. Re-
inforcement only is available from one alter-
native, and when received, causes the animal
to produce one extra choice to it after which
strict alternation is continued. Focusing solely
on the relation between choice behavior and
past reinforcers might lead to the incorrect
interpretation that reinforcement changes
choice behavior in an oscillatory manner.

These considerations led us to formulate
a response-by-response model that treats the
effects due to past reinforcers and choices as
separable processes. We used this statistical
model to predict individual choices based on
weighted combinations of recently obtained
reinforcers as well as previous behavior (c.f.,
Davison & Hunter, 1979), which allowed
choice predictions to be influenced both by
which alternatives had recently yielded re-
inforcers, as well as by sequential patterns in
choice behavior.

The present results help test existing models
of choice behavior. Many of the more plausi-
ble—in the sense that animals may actually
implement them—theoretical models incor-
porate some form of reinforcer rate estimation
using linear weightings of past reinforcers
(e.g., Killeen, 1981; Luce, 1959). Recently,
models using reinforcer rate estimation have
been used to make predictions about neural
activity. Single neurons in a number of cortical
areas have activity correlated with reinforcer
frequency (Barraclough, Conroy, & Lee, 2004;
Platt & Glimcher, 1999; Sugrue et al., 2004)
and magnitude (Platt & Glimcher, 1999).
These and related studies (Glimcher, 2002;

Montague & Berns, 2002; Schultz, 2004) are
beginning to lay the groundwork for a detailed
understanding of the mechanisms underlying
choice behavior, and highlight the importance
of behavioral models in forging a bridge
between behavior and brain. We have found
that local linear weightings of past reinforcers
predict the choice behavior of monkeys
performing a matching task, with weights
similar to those suggested by reinforcer rate
estimation models, but we extend this to show
that accounting for recent choices also is
required for accurate predictions by models
of this type. The present results suggest that
behavioral models incorporating dependence
on both past reinforcers and choices may
provide more accurate predictions, which will
be essential for correlation with neural activity.

METHOD

Subjects

Two male rhesus monkeys (Macaca mulatta)
were used as subjects (Monkey B and Monkey
H, 10.5 kg and 11.5 kg respectively at the start
of the experiments). Monkey H had been used
previously in another experiment studying eye
movements. Monkey B was naive at the start of
the experiments described here. Both mon-
keys experienced a similar sequence of train-
ing (described below), and both were naive to
the choice task used in this experiment.

Apparatus

Prior to behavioral training, each animal was
implanted with a head restraint prosthesis and
a scleral eye coil to allow for the maintenance
of stable head position and recording of eye
position. Surgical procedures were performed
using standard aseptic techniques under iso-
flurane inhalant anaesthesia (e.g., Platt &
Glimcher, 1997). Analgesia and antibiotics
were administered during surgery and contin-
ued for 3 days postoperatively.

Training sessions were conducted in a dimly
lit sound-attenuated room. The monkeys sat in
an enclosed plexiglass primate chair (28 cm by
48 cm) that permitted arm and leg move-
ments. The monkeys were head-restrained
using the implanted prosthesis. Body move-
ments were monitored from a separate room
with a closed-circuit infrared camera. Eye
movements were monitored and recorded
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using the scleral search coil technique (Judge,
Richmond, & Chu, 1980) with a sampling rate
of 500 Hz.

Visual stimuli were generated using an array
of light-emitting diodes (LEDs) positioned
145 cm from the subject’s eyes. The array
contained 567 LEDs (21 3 27, 2u spacing), and
each LED subtended about 0.25u of visual
angle.

Procedure

Training began after a postoperative re-
covery period of 6 weeks. Water delivered into
a monkey’s mouth via a sipper tube was used as
the reinforcer. The monkeys were trained on
weekdays, and obtained the bulk of their water
on these days during the 2 to 4 hr training
sessions. The monkeys were not trained on the
weekends, during which ad libitum water was
provided. To ensure that the monkeys were
adequately hydrated, we monitored the mon-
keys’ weights daily and the University veteri-
narian periodically assessed the condition of
the animals.

Initial training consisted of habituating the
monkeys to being head-restrained in the
primate chair. They were brought up from
their home cages daily, and sitting quietly in
the primate chair was reinforced with water.
After 1 to 2 weeks of chair training, the
monkeys were trained to shift their point of
gaze to visual targets and to hold fixation using
water reinforcement. We used manually con-
trolled reinforcement to shape immediate and
rapid movements to briefly illuminated LEDs,

and incrementally delayed reinforcement to
shape prolonged fixation. Once the monkeys
could shift gaze rapidly to targets presented
anywhere in the LED array and maintain
fixation for 1 to 2 s on that LED, we placed
reinforcement under computer control. The
monkeys then were trained to shift gaze to
eccentric visual targets from a central fixation
point. When the monkeys were performing
these tasks reliably, we began training on
a choice task.

The data reported in this paper were
collected while the monkeys performed the
two-alternative choice task shown in Figure 1.
Each trial started with a 500 ms 500 Hz tone,
after which the monkey was given 700 ms to
align their gaze within 3u of a yellow LED in
the center of the visual field. After maintaining
fixation for 400 ms, two peripheral LEDs (one
red and one green) were illuminated on either
side of the centrally located fixation point.
These peripheral LEDs were positioned an
equal distance from the fixation point; this was
occasionally varied by a few degrees from
session to session, but the distance was, on
average, 15u of visual angle. One second later,
the central fixation point disappeared, cueing
the monkey to choose one of the peripheral
LEDs by shifting gaze to within 4u of its
location and fixating for 600 ms. If a reinforcer
had been scheduled for the target chosen, it
was delivered 200 ms after the eye movement
was completed. The trial durations were the
same whether or not the animal received
reinforcement. Each trial lasted 3.2 to 3.65 s,

Fig. 1. Timeline and spatial arrangement of the two-alternative choice task.
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and only one choice could be made on each
trial. Trials were separated by a 2-s intertrial
interval (ITI) beginning at the end of the time
a reinforcer would have been delivered. No
LEDs were illuminated during the ITI. The
range in trial durations comes from the
variability in the amount of time taken by the
monkeys to select and execute their eye
movements. Relative to the duration of the
trial, this time was short (mean reaction time
187 ms with a standard deviation of 71 ms).

A trial was aborted if the monkey failed to
align its gaze within the required distances
from the fixation or choice targets, or if an eye
movement was made to one of the choice
targets before the fixation point was extin-
guished. When an abort was detected, all the
LEDs were extinguished immediately, no re-
inforcers were delivered, and the trial was
restarted after 3 s. The monkeys rarely aborted
trials (7% and 6% of trials for Monkey H and
Monkey B, respectively), and these trials were
excluded from our analyses.

Reinforcers were arranged by flipping a sep-
arate biased coin for each alternative using
a computer random-number generator; if
‘‘heads’’ came up for a particular alternative,
a reinforcer was armed, or scheduled, for that
alternative. Reinforcers were scheduled using
independent arming probabilities for each
alternative, meaning that on any trial both
alternatives, neither alternative, or only one
alternative might be armed to deliver a re-
inforcer. If a reinforcer was scheduled for the
alternative the monkey did not choose, it
remained available until that alternative was
next chosen (however, no information re-
garding held reinforcers was revealed to the
subjects). For example, if a subject chose the
left alternative when both alternatives were
armed to deliver reinforcers, he would receive
the reinforcer scheduled for the left alterna-
tive while the reinforcer for the right alterna-
tive would be held until the next time the
subject chose it, which could be any number of
trials into the future. A changeover delay or
changeover response was not used; reinforcers
were not delayed or withheld for an extra
response when subjects chose to switch from
selecting one alternative to the other. This
method of arranging reinforcers in a discrete-
trial choice task has been referred to as
‘‘dual assignment with hold’’ (Staddon et al.,
1981).

In one set of sessions, we held the magni-
tude of reinforcement obtained from choosing
either alternative equal while varying relative
reinforcer frequency within sessions. We used
arming probabilities that summed to about 0.3
(see Table 1 for precise values), and in each
single session, the monkeys performed a series
of trials under four different arming probabil-
ity ratios (in Condition 1 for example, the
ratios were 6:1, 3:1, 1:3, and 1:6). We switched
between these ratios in an unsignalled manner
as described below.

In another set of sessions, we held the
programmed arming probabilities constant
and equal while varying the relative reinforcer
magnitudes within sessions. The amount of
water delivered was controlled by varying the
amount of time a solenoid inline with the
water spout was held open. In each session, the
monkeys performed a series of trials under
four different magnitude ratios (in Condition
12 for example, the ratios were 3:1, 3:2, 2:3,
1:3), where the programmed arming probabil-
ity for both alternatives was 0.15. We switched
between these ratios in an unsignalled manner
as described below.

Note that for the arming probabilities used,
the subjects did not receive reinforcement on
every trial; the monkeys received, on average,
a reinforcer every three to four trials. However,
aside from whether or not a reinforcer was
delivered, the timing and appearance of each
trial was identical to the subjects.

In each session, the monkeys performed
a series of choice trials consisting of blocks of
trials at different relative reinforcer frequen-
cies or different relative reinforcer magni-
tudes. For example, in a frequency condition,
a monkey might perform 124 trials where the
right and left alternatives had an arming
probability of 0.21 and 0.07, respectively (a
3:1 ratio) then 102 trials at a 1:6 ratio followed
by 185 trials at a 3:1 ratio. Transitions between
blocks of trials with different ratios were
unsignalled, and the monkeys had to learn
by experience which alternative had the
higher frequency or magnitude of reinforce-
ment. When blocks were switched, the richer
alternative always changed spatial location, but
its degree of richness was variable; the two
possible ratios to switch to were chosen with
equal probability. For example, a 3:1 or 6:1
ratio was followed by a 1:6 or a 1:3 ratio with
equal probability. There were minor variations
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in the ratios (Table 1), but we used the
same method for block transitions in all
frequency and magnitude conditions as de-
scribed next.

We randomized the number of trials in each
block to discourage any control over behavior
by the number of trials completed in a block.
The number of trials in a block for all
conditions was 100 trials plus a random
number of trials drawn from a geometric
distribution with a mean of 30 trials. The
mean number of trials per block observed was

121 trials for Monkey H and 125 trials for
Monkey B, after excluding aborted trials.

The data analyzed were 67,827 completed
trials from Monkey H and 47,160 completed
trials from Monkey B. All the data reported
were collected after at least 3 months of
training on the choice task.

RESULTS

We present our results in two sections. First
we describe the steady-state behavior at the

Table 1

Experimental conditions for each monkey. The arming probability and magnitude of
reinforcement are listed for each alternative. The magnitude of reinforcement is in units of
milliliters.

Monkey H Monkey B

Arming
probabilities Magnitudes

Number of
blocks

Arming
probabilities Magnitudes

Number of
blocks

Frequency
condition

Frequency
condition

1 0.24/0.04 0.35/0.35 16 5 0.25/0.05 0.4/0.4 5
0.21/0.07 0.35/0.35 12 0.22/0.08 0.4/0.4 9
0.07/0.21 0.35/0.35 11 0.08/0.22 0.4/0.4 7
0.04/0.24 0.35/0.35 19 0.05/0.25 0.4/0.4 5

2 0.24/0.04 0.4/0.4 5 6 0.25/0.05 0.5/0.5 18
0.21/0.07 0.4/0.4 8 0.22/0.08 0.5/0.5 15
0.07/0.21 0.4/0.4 8 0.08/0.22 0.5/0.5 11
0.04/0.24 0.4/0.4 4 0.05/0.25 0.5/0.5 18

3 0.24/0.04 0.45/0.45 7 7 0.29/0.04 0.5/0.5 12
0.21/0.07 0.45/0.45 10 0.24/0.09 0.5/0.5 15
0.07/0.21 0.45/0.45 5 0.09/0.24 0.5/0.5 13
0.04/0.24 0.45/0.45 10 0.04/0.29 0.5/0.5 17

4 0.24/0.04 0.5/0.5 10 8 0.283/0.047 0.55/0.55 9
0.21/0.07 0.5/0.5 13 0.248/0.082 0.55/0.55 8
0.07/0.21 0.5/0.5 10 0.082/0.248 0.55/0.55 10
0.04/0.24 0.5/0.5 12 0.047/0.283 0.55/0.55 3

5 0.25/0.05 0.4/0.4 9 9 0.283/0.047 0.6/0.6 3
0.22/0.08 0.4/0.4 3 0.248/0.082 0.6/0.6 5
0.08/0.22 0.4/0.4 7 0.082/0.248 0.6/0.6 5
0.05/0.25 0.4/0.4 8 0.047/0.283 0.6/0.6 3

6 0.25/0.05 0.5/0.5 21
0.22/0.08 0.5/0.5 22
0.08/0.22 0.5/0.5 17
0.05/0.25 0.5/0.5 18

Magnitude
condition

Magnitude
condition

10 0.15/0.15 0.6/0.2 12 10 0.15/0.15 0.6/0.2 7
0.15/0.15 0.5/0.3 10 0.15/0.15 0.5/0.3 9
0.15/0.15 0.3/0.5 12 0.15/0.15 0.3/0.5 10
0.15/0.15 0.2/0.6 10 0.15/0.15 0.2/0.6 2

11 0.15/0.15 0.6/0.2 42 11 0.15/0.15 0.6/0.2 20
0.15/0.15 0.48/0.32 38 0.15/0.15 0.48/0.32 19
0.15/0.15 0.32/0.48 36 0.15/0.15 0.32/0.48 21
0.15/0.15 0.2/0.6 33 0.15/0.15 0.2/0.6 17

12 0.15/0.15 0.75/0.25 29 12 0.15/0.15 0.75/0.25 18
0.15/0.15 0.6/0.4 27 0.15/0.15 0.6/0.4 21
0.15/0.15 0.4/0.6 27 0.15/0.15 0.4/0.6 21
0.15/0.15 0.25/0.75 20 0.15/0.15 0.25/0.75 20
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end of each block in terms of the generalized
matching law. This establishes the behavioral
endpoint that we seek to explain using re-
sponse-by-response models in the subsequent
section.

Steady-State Analysis

Figure 2 shows examples of responses to
block transitions for each monkey. The curves
show the probability of choosing the alterna-
tive that was richer following an unsignalled
block transition, aligned on the trial at which
the transition occurred. These probabilities
were computed by averaging choices for trials

preceding and following a block transition.
For example, the thick line in the upper left
panel is an average of all transitions that ended
with an arming probability ratio of 24:4.
Likewise, the thin lines in the lower panels
are averages of all transitions that ended with
a magnitude ratio of 3:2. The curves in Figure 2
are similar prior to the transition because both
are averages of the two possible pretransition
ratios (see Methods). There was a rapid
acquisition period following the transition,
and the curves diverged for the two possible
posttransition ratios. We quantified the speed
of acquisition using the number of trials it

Fig. 2. Example choice data aligned on the trial (dashed line) that a transition between ratios occurred. The upper
panels are data from conditions (Table 1) where reinforcer frequency was manipulated, and the lower panels are data
from conditions where reinforcer magnitudes were manipulated. The data were compiled with respect to the alternative
that was richer following the transition, and averaged separately for the two possible programmed posttransition ratios
(pretransition ratios were on average ,1:4 for the top panels, and ,1:2 for the bottom panels). The data were smoothed
using a five-point moving average.
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took the monkeys to reach a 50% rate of
choosing the richer alternative following
a block transition. This was 11.4 trials for
Monkey H and 10.42 trials for Monkey B
averaged over all the conditions where re-
inforcer frequency was manipulated. There
was no difference between the acquisition
times for the two possible posttransition ratios
in each condition (,3:1 and ,6:1). The
acquisition time was 11.56 trials for Monkey
H and 10.86 trials for Monkey B averaged
over all the conditions where reinforcer
magnitude was manipulated. However, for
the reinforcer magnitude conditions, there
was a difference between these times that
depended on the posttransition reinforcer
magnitude ratio; transitions to a 3:1 ratio
were faster (9.84 trials for Monkey H and
8.55 trials for Monkey B) than transitions to
a 3:2 ratio (13.27 trials for Monkey H and
13.17 trials for Monkey B).

Figure 2 shows that there was a period
following acquisition where the animals’ be-
havior fluctuated about a steady-state. We
characterized the differences in steady-state
preference by analyzing the last 65 trials of
each block. We chose this number based on
plots like Figure 2, which show that behavior
had, on average, reached a steady-state by this
point in each block.

Figure 3 shows log ratio responses from
example reinforcer frequency and reinforcer
magnitude conditions. We fit the data for each
condition with the logarithmic form of the
generalized matching law,

log
C1

C2

� �
~alog

R1

R2

� �
zblog

M1

M2

� �
zlogc, ð2Þ

using least-squares regression. Equation 2 was
used without the magnitude term for the
conditions where we manipulated reinforcer
frequency, whereas for the magnitude condi-
tions, we included the term for reinforcer
frequency because the reinforcement sched-
ules did not enforce precise equality between
the obtained reinforcer frequencies from the
two alternatives. The estimated parameters
from these fits are listed in Table 2. The
coefficients and quality of fits were similar for
the 2 monkeys, consistent with the examples
shown in Figure 3. Both animals showed
greater sensitivity to reinforcer magnitude (b)
than reinforcer frequency (a).

Figure 4 shows log response ratios as
a function of log obtained reinforcer frequen-
cy and log reinforcer magnitude ratios for all
our data. The plane through the data repre-
sents a least-squares fit of Equation 2, exclud-
ing data in which no reinforcers were obtained
from one of the alternatives (six of 551 blocks
for Monkey H, 10 of 376 blocks for Monkey B).
The generalized matching law provided good
fits to the data, accounting for 90% of the
variance in the data for both monkeys.

We assessed the degree to which our data
deviated from the generalized matching law by
checking for a dependence of the observed
behavior on nonlinear transformations of
relative reinforcer frequency and relative re-
inforcer magnitude not captured by Equation
2. We did this by adding polynomial covariates
to Equation 2; for the reinforcer frequency
conditions, we fit additional coefficients for
log reinforcer frequency ratio raised to the
second and third powers, whereas for the
reinforcer magnitude conditions, we fit addi-
tional coefficients for log reinforcer frequency
and log reinforcer magnitude ratios raised to
the second and third powers. Including these
covariates accounted for quadratic and cubic
deviations in the data, but only increased the
average percentage of variance explained by
1.8% (range, 0.31 to 3.81%) and 1.5% (range,
0.13 to 2.63%) for the reinforcer frequency
and reinforcer magnitude conditions, respec-
tively. This indicates that the generalized
matching law is a reasonable description of
our data, even though it typically is used to
describe data after many sessions, rather than
trials, of training under the same reinforcer
conditions.

Although the generalized matching law fits
the steady-state behavior that we measured, it
only describes average choice. It is silent
regarding the sequences of choices underlying
these averages. At one extreme, we might
hypothesize that the response-by-response pro-
cess that achieves steady-state behavior oper-
ates is purely deterministic. At the other
extreme, we might hypothesize that behavior
is allocated according to a purely probabilistic
strategy. We examined how probabilistic the
monkeys were by studying how runlengths, the
number of consecutive choices to a particular
alternative, vary with the degree of preference,
as measured by the relative responses from
each block. If the monkeys chose in a purely
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probabilistic manner by flipping a weighted
coin on each trial, with the weight dictated by
the degree of preference (e.g., a 2:1 prefer-
ence gives a two-thirds probability of choosing
the preferred alternative on each trial), the
runlengths would be distributed geometrically
with a mean equal to the reciprocal of the coin
weight. This is a useful baseline model because
the assumption of independence between
trials that defines this model means that the
degree of weighting of the coin fully specifies

the runlength distributions (e.g., Houston &
Sumida, 1987).

Figure 5 shows runlength as a function of
preference, with these variables measured
from the last 65 trials in each block. Run-
lengths were measured for both alternatives;
for example, the sequence of choices
RLLLLLR from a block where L was preferred
would contribute a runlength of five to the
runlengths for the rich, or preferred, alterna-
tive and a runlength of one to the runlengths

Fig. 3. Log choice ratios (right over left) from individual conditions (see Table 1 for ratios used in each condition) as
a function of obtained log reinforcer frequency ratios (upper panels) or log reinforcer magnitude ratios (lower panels).
Each point was obtained by averaging the number of choices and reinforcers from the last 65 trials of a block. The lines
represent least-squares fits of the generalized matching law, the coefficients of which are listed in Table 2. The solid
symbols plotted at the extremes of the abscissa (for Monkey B) represent blocks where no reinforcers were obtained from
one of the alternatives. For the magnitude conditions, the effect due to reinforcer frequency has been subtracted from
the log choice ratios.
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for the lean, or nonpreferred, alternative.
Because neither animal exhibited a significant
spatial bias, runlengths were compiled for the
preferred and nonpreferred alternatives irre-
spective of spatial location. The points have
been jittered slightly along the abscissa to
reveal data that otherwise would have stacked
on top of each other. Almost as soon as one of
the alternatives was preferred, the runlengths
for the nonpreferred alternative became very

short, typically one trial (mean across all
preferences was 1.05 trials with a standard
deviation of 0.09).

Figure 5 also shows the predicted average
runlengths under the probabilistic strategy
described above. The actual runlength data
systematically deviate from and hence reject
this model, implying that average preference
as specified by the generalized matching law is
insufficient to specify the average runlength

Table 2

Fits of the generalized matching law (Equation 2) to the steady-state data from the end of each
block. The condition labels in the first column correspond to those in Table 1.

Monkey H Monkey B

log c (SE) a (SE) b (SE) R2 log c (SE) a (SE) b (SE) R2

Frequency condition
1 0.06 (0.06) 0.51 (0.03) — 0.88
2 0.10 (0.09) 0.50 (0.04) — 0.89
3 20.08 (0.08) 0.52 (0.03) — 0.91
4 0.16 (0.07) 0.44 (0.03) — 0.87
5 0.00 (0.07) 0.57 (0.03) — 0.93 20.01 (0.09) 0.51 (0.04) — 0.88
6 0.05 (0.05) 0.54 (0.02) — 0.89 20.10 (0.07) 0.56 (0.03) — 0.86
7 0.00 (0.05) 0.58 (0.02) — 0.93
8 20.01 (0.08) 0.49 (0.03) — 0.89
9 20.10 (0.08) 0.56 (0.04) — 0.95

pooled 0.05 (0.03) 0.51 (0.01) — 0.88 20.04 (0.03) 0.54 (0.01) — 0.89

Magnitude condition
10 0.08 (0.05) 0.31 (0.06) 1.02 (0.04) 0.96 20.15 (0.11) 0.43 (0.16) 1.31 (0.11) 0.92
11 0.05 (0.03) 0.34 (0.05) 1.04 (0.03) 0.92 20.18 (0.05) 0.49 (0.07) 1.34 (0.05) 0.95
12 0.08 (0.04) 0.31 (0.06) 0.94 (0.04) 0.90 20.05 (0.06) 0.56 (0.08) 1.08 (0.06) 0.88

pooled 0.06 (0.02) 0.32 (0.03) 1.00 (0.02) 0.92 20.11 (0.03) 0.53 (0.05) 1.22 (0.04) 0.91

Fig. 4. Log choice ratios (right over left) as a function of obtained log reinforcer frequency ratios and log reinforcer
magnitude ratios. Each point was obtained by averaging choices and reinforcers from the last 65 trials of a block. All such
data from both the frequency (open squares) and magnitude (filled circles) experiments are plotted. The planes through
the data are fits of the generalized matching law to the entire data set for each monkey.
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patterns. Instead, they show that the monkeys
tend to stay at the richer alternative, switching
briefly to sample the leaner alternative. Baum,
Schwendiman, and Bell (1999) observed this
pattern of behavior in pigeons under concur-
rent VI VI schedules, terming it ‘‘fix-and-
sample.’’ The runlength analysis highlights
the fact that the monkeys’ choices on in-
dividual trials were not independent during
steady-state behavior. These response-by-re-

sponse dependencies could have arisen from
the effects of past reinforcers and/or past
choices, but how this occurs cannot be revealed
through sequential statistics like runlengths
because they do not take into account when
reinforcers were delivered. In the next section
we characterize these response-by-response dy-
namics by constructing statistical models that
predict choice on each trial based on the history
of reinforcers and choices.

Fig. 5. Mean runlength as a function of preference. Each point represents the mean runlength in the last 65 trials of
each block, plotted separately for choices of the rich (circles) and lean alternatives (3s). The data are plotted on log-log
coordinates, and the points are jittered slightly along the abscissa to reveal points that otherwise would have stacked on
top of each other. The lines represent mean runlengths predicted by a Bernoulli process that allocates choice
independently from trial-to-trial, as in a series of independent weighted coin flips. The left panels show examples from
single conditions for each monkey. The right panels show runlengths for all the data combined; for clarity, the data
points for the conditions used in the left panels are not included in the pooled data.
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Dynamic Analysis

We used response-by-response models to
predict choice on each trial using the past
history of reinforcers and choices. Here we
introduce some necessary notation. Let cR,i

and cL,i represent the choice to left and
right alternatives on the ith trial. These
variables are binary; a value of 1 indicates
a choice of a particular alternative. In order
to fit a model to the data, we seek to estimate
the probability, pR,i, of choosing the right
alternative (i.e., the probability cR,i 5 1). We
assume that past reinforcers and choices are
linearly combined to determine choice on
each trial, which allows us to write the logistic
regression,

log
pR ,i

pL,i

� �
~
X
j~1

aR ,j rR ,i{jz
X
j~1

aL,j rL,i{j

z
X
j~1

bR ,j cR ,i{jz
X
j~1

bL,j cL,i{jzc,

ð3Þ

where r is the magnitude of reinforcement in
milliliters of water received for choosing
a particular alternative on the jth past trial,
and zero otherwise. Like the generalized
matching law, Equation 3 implies that the
probability and the magnitude of reinforcers
have independent effects (i.e., they combine
multiplicatively). The a and b coefficients
measure the influence of past reinforcers and
choices, and the intercept term c captures
preference not accounted for by past reinforc-
ers or choices, similar to the bias term in the
generalized matching law. The coefficients
represent changes in the natural logarithm of
the odds of choosing the right alternative (or
equivalently left since pL,i 5 1 2 pR,i). The
model is linear in the log odds, but nonlinear
in the probability of choice, which can be
recovered by exponentiating both sides of
Equation 3 and solving for pR,i.

We simplify the model by assuming that the
effects of past reinforcers and choices are
symmetric; a past reinforcer or a choice to the
right alternative changes the odds of choosing
right by the same amount that a past re-
inforcer or a choice to the left alternative
changes the odds of choosing left. Note that
this assumption is required for the past choices
(but not past reinforcers) in order to be able
to fit the model because there are only two
choice alternatives, cL,i 5 1 2 cR,i. Then, the

model reduces to

log
pR ,i

pL,i

� �
~
X
j~1

aj rR ,i{j{rL,i{j

� �

z
X
j~1

bj cR ,i{j{cL,i{j

� �
zc:

ð4Þ

Here a unit reinforcer obtained j trials in the
past increases the log odds of choosing an
alternative by aj if the reinforcer was received
for choosing that alternative, otherwise it
decreases the log odds by aj. This applies
similarly to the effects of past choices, where
a significant bj means that the current choice
depends on a choice made j trials ago (Cox,
1970).

Note that excluding the terms associated
with the b parameters (forcing all bj 5 0)
yields a model that only depends on the
history of obtained reinforcers, producing
results similar to those obtained by transfer
function estimation (c.f., Palya et al., 1996,
2002; Sugrue et al., 2004). Alternatively,
excluding the terms associated with the
a parameters (forcing all aj 5 0) yields
a regression that only depends on the history
of choices taken. Including both a and b allows
us to assess the independent effects reinforcer
and choice history have on current choice.

The intercept term c shifts preference
towards one of the alternatives irrespective of
reinforcement (it captures a bias not due to
either reinforcer frequency or reinforcer
magnitude). It also is possible that the
monkeys were biased towards the rich alterna-
tive, independent of its spatial location. This is
distinct from the effect captured by c, because
a bias towards the rich alternative will switch
repeatedly within a session (as the location of
the richer alternative switched), so long as the
animal can actually identify the richer alterna-
tive (Davison & Baum, 2003). We tested for
this effect by adding a dummy variable that was
+1 on trials when the right alternative was rich
and 21 when the left alternative was rich. This
allows for a bias towards or away from the rich
alternative depending on the sign of the fitted
coefficient for the dummy variable. We as-
signed the identity of the rich alternative
according to the first reinforcer the animal
obtained in a block, and this remained fixed
until the first reinforcer obtained in the
following block, at which point the sign of
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the dummy variable switched. A rich bias is
separable from the effects of past reinforcers
because the first sum in Equation 4 only
contributes when reinforcers are delivered
(recall that reinforcers are not delivered on
every trial), whereas a bias towards the rich
alternative can influence behavior even when
no reinforcers are delivered.

The complete model therefore had four
components: a dependence on past reinforc-
ers and choices, as well as two kinds of bias,
one for a constant bias towards an alternative
and another for a bias towards the rich
alternative. We fit this model to the data using
the method of maximum likelihood (e.g.,
Fahrmeir & Tutz, 2001; McCullagh & Nelder,
1989). The model was fit twice for each
monkey, once for all of the data pooled across
reinforcer frequency conditions (32,126 trials
for Monkey H and 24,337 trials for Monkey B),
and again for all of the data pooled across
reinforcer magnitude conditions (35,701 trials
for Monkey H and 22,823 trials for Monkey B).
The intersession spacing was dealt with by
padding the design matrix with zeros so that
reinforcers and choices from different sessions
were not used to predict responses from other
sessions.

The results obtained from fitting the model
are plotted in Figure 6. The coefficients
represent changes in the log odds of choosing
an alternative due to a unit reinforcer (upper
panels) or a previous choice (middle panels).
The coefficients are plotted for models fit
using a history of 15 trials. We address how
long a history is required by the most
parsimonious model in a later section; extend-
ing the history does not affect the results
presented here. The change due to a reinforc-
er j trials in the past (upper panels) can be
determined by reading off the coefficient
value from the ordinate and multiplying it by
the magnitude of reinforcement in milliliters.
For example, the effect of a typical 0.5 ml
reinforcer four trials in the past for Monkey H
in the probability conditions is 0.83 3 0.50 5
0.42. This is an increase in log odds, so
exponentiating gives an increased odds of
1.52 for choosing the reinforced alternative
on the current trial. The pattern of results for
reinforcer history is similar for both animals;
the most recent reinforcers strongly increased
the odds of choosing the reinforced alterna-
tive again, and this influence decayed as

reinforcers receded in time. For both mon-
keys, the coefficients for reinforcer history
are similar in shape for both the probability
and magnitude conditions, although the coef-
ficients are larger in the probability condi-
tions. Relative to Monkey H, the coefficients
for Monkey B are initially larger, but also decay
more quickly, indicating that recent reinforc-
ers would shift preference more strongly, but
that their effects are more local in time.

The middle panels in Figure 6 indicate that
the effects of recent choices are somewhat
more complicated. These coefficients should
be interpreted in the same way as the
coefficients for past reinforcers, except that
there is no need to scale the coefficients
because the choice variables are binary. The
negative coefficient for the last trial means that
choosing a particular alternative decreased the
odds of choosing that alternative again on the
next trial, independent of any effects due to
reinforcer history. Alone, this coefficient
would produce a tendency to alternate. Posi-
tive coefficients for the trials further in the
past than the last trial mean that choosing
a particular alternative some time in the past
increases the likelihood of choosing it again,
independent of the effects due to past re-
inforcers. Alone, these coefficients would pro-
duce a tendency to persist on an alternative.

Taken together the model coefficients in-
dicate that recent reinforcers and choices act
to produce persistence on the rich alternative
with occasional sampling of the lean alterna-
tive. This pattern comes about because larger
or more frequent reinforcers increase the
likelihood of repeating choices to the alterna-
tive that yields them. Momentary decreases in
rich reinforcers eventually cause a switch to
the lean alternative, followed by a tendency to
switch immediately back to the rich alternative
due to longer-term choice history effects.

The bias terms are plotted in the bottom
panels of Figure 6. There was little or no
spatial bias towards either alternative, which
was consistent with our steady-state analysis
using the generalized matching law. There
was, however, a bias towards the rich alterna-
tive that was larger for the magnitude condi-
tions.

We now return to the issue of determining
the length of reinforcer and choice histories
supported by the data. Equation 4 does not
specify a unique model; each combination of
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lengths of reinforcer and choice histories
constitutes a candidate model. In principle,
one could include nearly all past reinforcers
and choices in the model; however, this lacks
parsimony, and the resulting parameters can
be highly variable because estimation is limited
by the amount of data available. Alternatively,
including too few parameters leads to a poor
fit. We used Akaike’s Information Criterion
(AIC; Akaike, 1974) to select objectively a best
model given the data. The AIC estimates the
information lost by approximating the true
process underlying the data by a particular
model (see Burnham & Anderson, 1998). For

each candidate model, the AIC is computed as

AIC~{2ln Lð Þz2k, ð5Þ

where is the maximized log-likelihood of the
model fit and k is the number of parameters.
Equation 5 enforces parsimony by balancing
the quality of each fit with the increase in
model complexity brought by adding more
parameters; good fits obtained by adding more
parameters decrease the first term but also
increase the second term. This makes intuitive
sense; at some point adding more parameters

Fig. 6. Coefficients for the fitted dynamic linear model as a function of the number of trials in the past relative to the
current trial. The coefficients for past reinforcers, past choices, and biases are plotted in the upper, middle, and lower
panels, respectively. The vertical ticks in the upper panels represent the largest 95% confidence intervals for the past
reinforcers. Confidence intervals are not plotted for the other coefficients, as they were smaller than the symbols.
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is less informative because the extra param-
eters are fitting random variations in the data.
Selecting the model with the smallest AIC
value identifies the model that is the best
approximation within the model set to the
true underlying process in an information-
theoretic sense.

We computed AIC values for a family of
models in which we varied the lengths of the
reinforcer and choice histories. We varied the
lengths up to 50 trials each, and selected the
best model according to the minimal AIC
value across the 2,500 candidate models. The
results are listed in Table 3. Note that only
relative differences between AIC values are
meaningful; the absolute values associated
with any one model are not. The best models
are very local, integrating relatively few past
reinforcers (average 14 trials) and choices
(average 22 trials), which confirms the visual
impression provided by Figure 6. Part of the
reason that the effects of past choice extends
further into the past than the effects of past
reinforcers is due to the fact that there are
many more choices than there are reinforced
choices because subjects were not reinforced
on every response. This provides more data
with which to fit the choice history coefficients.
This is why the confidence intervals for the
choice history coefficients are smaller than
those for the reinforcer history coefficients in
Figure 6.

For comparison, results for two simpler
models also are shown in Table 3; one includes

only a constant bias, which is similar to a model
that simply guesses with a probability of 0.5 on
each trial, whereas the other adds the effects of
past reinforcers (without past choices). The
differences in AIC values in Table 3 represent
the degree of evidence in favor of the best-
fitting model, and the simpler models were
selected to give a sense of the contribution of
each model component. The larger the
difference the less plausible a model is
compared to the best model; values greater
than 10 on this scale provide strong support
for the model with the smallest AIC value
(Burnham & Anderson, 1998). Even though
incorporating the effects of past choices into
the model increases its complexity, its im-
proved ability to fit the data makes up for the
cost of adding these extra parameters.

The AIC measure indicates that the best-
fitting model requires relatively few param-
eters. However, this measure can only de-
termine which model is the best of the set of
models considered. Even a set of poorly fitting
models will have a ‘‘best’’ model, so we
checked the goodness-of-fit by asking how well
the best model (a) predicts average choice
behavior including transitions between rein-
forcer ratios; and (b) how well it captures fine
response-by-response structure.

Figure 7 shows an example of the choice
probabilities measured in a single session
along with the corresponding probabilities
predicted by the best-fitting model. To convey
the fit of the model to average choice
behavior, Figure 8 shows choice probabilities

Table 3

Model comparison using Akaike’s Information Criterion. The three rows for each condition
correspond to three separate models, with each row representing a more complex model. The
third row for each condition is the best-fitting model according to the AIC metric, and the DAIC
column gives the difference between each model and the best model’s AIC value. The numbers
in parentheses for the best model correspond to the number of past reinforcers and choices,
respectively. The total number of parameters for the models including past reinforcers and
choices includes the two bias terms.

Monkey H Monkey B

Number of
parameters AIC DAIC

Number of
parameters AIC DAIC

Frequency conditions
Bias 1 39451 12502 1 32062 11973
+ Reinforcers 17 35901 8952 17 28297 8208
+ Choices 43 (13, 28) 26949 0 42 (14, 26) 20089 0

Magnitude conditions
Bias 1 46162 14829 1 30184 10757
+ Reinforcers 17 41340 10007 17 25429 6002
+ Choices 38 (16, 20) 31333 0 28 (11, 15) 19427 0
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in a format like Figure 2. Also plotted are
predictions from the best-fitting model, which
were averaged just like the actual choice data.
The model predictions captured the steady-
state average as well as the dynamics of the
transitions between blocks. There is a mispre-
diction, however, that is obvious only in the
extreme transitions for the magnitude condi-
tions (lower right panel in Figure 8). For these
transitions, the monkeys were quicker to
respond to new reinforcer conditions than
the model predicted.

Although Figure 8 reveals that the model
accurately captures average behavior in our
task, this comparison cannot determine wheth-
er the model adequately characterizes fine
structure at the response-by-response level
because it is an average over many transitions.
The runlength analysis above (Figure 5)
showed clear structure at the response-by-
response level, and we tested whether the
model sufficiently characterized the fine struc-
ture in behavior by analyzing model residuals,
the response-by-response differences between
the predicted choice probabilities and the
observed choice data. These residuals repre-
sent variation in the data not explained by the
model, and are useful because inadequate
models will yield structured residuals (e.g.,
Box & Jenkins, 1976).

We used autocorrelation functions to assess
whether the residuals showed any response-by-
response structure. These functions represent
the average correlation between residuals

separated by a certain number of trials. A
random process that is independent from trial-
to-trial, like a fair coin, has zero autocorrela-
tion for any trial separation (a fair coin flipped
now does not depend on the outcome of any
previous flip). Significantly nonzero autocor-
relations in the residuals, therefore, would
reveal systematic failures of the model. We
estimated autocorrelations by shifting the
residuals one trial and computing the correla-
tion between the shifted residuals and the
original, repeating this for each of 25 shifts.
Figure 9 shows residual autocorrelations
for the best-fitting model. The horizontal
grey lines represent approximate 95% confi-
dence intervals for autocorrelations expected
from an independent random process.
For both monkeys, the autocorrelations
stayed mostly within these confidence inter-
vals, indicating that the residuals were largely
unstructured. For comparison, the thinnest
lines in the bottom panels of Figure 9 are
the residual autocorrelations from a model
that only incorporates reinforcer history (the
choice history regressors were excluded).
This model is inadequate, and clearly indicates
the need to incorporate the effects of past
choices to account for the response-by-re-
sponse structure in our task. Indeed, the
structure of the autocorrelation functions
for this model reveals the underlying tendency
of the monkeys to alternate and persist as
shown by the full model (middle panels of
Figure 6).

Fig. 7. Predicted and observed choice data for a single session of data from Monkey H (Condition 6). The dashed
vertical lines mark the unsignalled block transitions. The data were smoothed with a nine-point moving average.
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Taken together, the analyses suggest that
a local linear model that includes an effect for
past choices accounted for behavior in our
task.

DISCUSSION

We studied the choice behavior of monkeys
in a task where reinforcement contingencies
were varied within a session. We showed that
even though the monkeys’ choice behavior was
variable at a response-by-response level, behav-
ior averaged over tens of trials was a lawful
function of reinforcer frequency and magni-

tude. Monkeys adjusted their choice behavior
in response to abrupt reversals in the prevail-
ing reinforcer conditions, reaching an average
steady-state of responding after obtaining
relatively few reinforcers under the new
schedule conditions. Steady-state behavior at
the end of each block was well accounted for
by the generalized matching law (Baum,
1974). When we varied the relative frequencies
of reinforcement, we found that monkeys
preferred the rich alternative less than would
be expected if they strictly matched the ratio of
their choices to the ratio of reinforcers
obtained, a finding known as undermatching.

Fig. 8. Predicted and observed choice data aligned on the trial that a transition between ratios occurred. The upper
panels are data from conditions where reinforcer frequency was manipulated, and the lower panels are data from
conditions where reinforcer magnitudes were manipulated. The left panels show examples from single conditions for
each monkey; the right panels show averages across the entire data set. These data were compiled with respect to the two
possible posttransition ratios for each condition (see Figure 2 for details). The data were smoothed using a five-point
moving average.
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However, in the magnitude conditions we
found that both monkeys matched, or slightly
overmatched, their choice allocation to the
ratio of obtained reinforcers.

These results may appear at odds with
findings in other species, which typically show
that animals slightly undermatch for rate of
reinforcement and strongly undermatch for
magnitude of reinforcement (e.g., Baum,
1979; Davison & McCarthy, 1988). However,
like us, Anderson et al. (2002) reported strong
undermatching in monkeys performing under
standard concurrent VI VI schedules for food
reinforcers. This was true despite the fact that
their study, unlike ours, used a changeover
delay. In addition, we may have observed

stronger undermatching because we reversed
the reinforcement contingencies many times
during a single session. Indeed, strong under-
matching is commonly observed under condi-
tions like those we used, such as frequent
(Davison & Baum, 2000) or continuous (Palya
& Allan, 2003) schedule changes. Regarding
the high sensitivity to magnitude, the pub-
lished data are varied, with observations of
near-strict matching (Brownstein, 1971; Keller
& Gollub, 1977; Neuringer, 1967) as well as
undermatching (Schneider, 1973; Todorov,
1973) being reported.

A principal feature of the choice task we
used was the unpredictable and frequent
changes in reinforcer frequency and magni-

Fig. 9. Autocorrelation functions of model residuals. The thick black line and the dashed line are the autocorrelation
functions of the residuals from the best-fitting models (see Table 3) for the probability and magnitude conditions,
respectively. The top panels show examples from single conditions for each monkey; the bottom panels show averages
across the entire data set. The thin black line in the lower panels is the autocorrelation function of the residuals from
a model that does not account for the effects of past choices (only shown for magnitude conditions). The gray horizontal
bands give approximate 95% confidence intervals for an independent stochastic process.
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tude ratios within sessions. Periods of steady-
state behavior were preceded by transitions
during which the monkeys adjusted their
behavior to new reinforcer conditions. Choice
behavior began to shift towards the richer
alternative after relatively few reinforcers had
been delivered in the new reinforcer condi-
tions, despite the fact that block changes were
unsignalled and unpredictable. Similarly rapid
behavioral adjustments have been observed in
response to changes in the frequency (Davison
& Baum, 2000; Dreyfus, 1991; Gallistel, Mark,
King, & Latham, 2001; Mark & Gallistel, 1994;
Sugrue et al., 2004) and magnitude of re-
inforcement (Davison & Baum, 2003) under
concurrent VI VI schedules, as well as under
other types of reinforcement schedules (Bailey
& Mazur, 1990; Dorris & Glimcher, 2004;
Grace et al., 1999; Mazur, 1992).

We found that choice behavior during both
steady-state periods at the end of each block as
well as in the rapid shifts during transitions
between blocks were well characterized by
a response-by-response model that linearly
combined past reinforcers and past choices
to predict current choice. We found a decaying
effect of past reinforcers with more recently
obtained reinforcers more strongly influenc-
ing choice behavior. Our analysis differs from
other methods that have been used to exam-
ine local reinforcer effects in that the effects of
past reinforcers were separated from the
effects of past choices (c.f., Davison & Baum,
2000, 2003; Dorris & Glimcher, 2004; Mark &
Gallistel, 1994; McCoy, Crowley, Haghighian,
Dean, & Platt, 2003; Sugrue et al., 2004).
Analyses that do not separate these effects can
be more difficult to interpret. Behavior that is
independent of reinforcement, such as a ten-
dency to alternate between two actions, may
appear to be caused by reinforcement if
sequential patterns of choice are not analyzed
as well. For example, estimating the likelihood
of repeating a choice to an alternative by
averaging responses or response ratios for
a number of trials following each reinforcer
to that alternative often produces oscillatory
conditional probabilities (e.g., Bailey & Mazur,
1990; Davison & Baum, 2000; Mazur, 1992),
which these authors recognize is due to
sequential structure in choice behavior. These
oscillations can obscure the structure of the
effects due to reinforcers. In our analysis,
when the effects of past choices were ac-

counted for, we found that the effects of past
reinforcers were highly local, becoming essen-
tially ineffective by the time they have moved 5
to 10 trials into the past (Figure 6). In contrast,
excluding the effects of past choices can result
in biased estimates of the effects of past
reinforcers, which results from this reduced
model’s attempt to account for the effects of
past choices using only responses that yielded
reinforcers. We have found that even if
alternation is accounted for by incorporating
the effects of the last choice, the estimates for
the effects of past reinforcers can be biased
upwards. In our data, failure to account for the
effects of enough past choices resulted in
reinforcer effects that remained significant up
to 30 trials into the past. Separating the effects
of past reinforcers and choices may be of
neurobiological importance if the mechanisms
of reinforcement learning are distinct from
the mechanisms of structuring sequential
choice behavior (e.g., Daw, Niv, & Dayan,
2005).

The linear model we used is only one
method to separate the effects of past re-
inforcers from past choices. Another method
is to estimate conditional probabilities with
respect to time rather than responses in free-
operant tasks, which effectively averages out
choice structure unrelated to reinforcement
(e.g., Davison & Baum, 2002). Alternatively,
one could treat specific sequences of choices
as units of analysis (Sugrue et al., 2004). Both
of these methods also reveal decaying effect of
reinforcers, but they are not focused on
characterizing the effects of past choices.
One advantage of including covariates for past
choices in the manner we did is that it allows
one to assess quantitatively the relative effects
of past reinforcers and choices.

By accounting for the effects of past choices
we showed that our monkeys have a short-term
tendency to alternate as well as a longer-term
tendency to persist on the more frequently
chosen alternative. Combined with the effects
of past reinforcers, this produced a fix-and-
sample pattern of choice; there was a tendency
to persist on the rich alternative with brief
visits to the lean alternative. This sequential
pattern of choices was first explored under
concurrent VI VI schedules using detailed
analyses of runlengths (Baum et al., 1999)
and interresponse intervals (Davison, 2004).
Moreover, Baum et al. showed that the
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sequential structure varied depending on
presence or absence of a changeover delay;
pigeons adjust their patterns of choice behav-
ior to respect the fluctuations in local proba-
bility of reinforcement. Similar adjustments
have been observed when animals have been
trained to exhibit random sequences of
behavior (Lee, Conroy, McGreevy, & Barra-
clough, 2004; Neuringer, 2002). These results
show that animals can adjust the degree to
which memories of past reinforcers and
choices influence behavior. Incorporating
choice as a covariate in dynamic response-by-
response models allows one to isolate these
changes from those due to past reinforcers
(Lee et al., 2004; Mookherjee & Sopher,
1994).

Theoretical Models

The statistical model we presented is princi-
pally descriptive. However, we can recast it in
a different way for comparison with substantive
theoretical models. Doing so helps relate our
work to neurophysiological work by making
clear which variables might be explicitly
represented by the nervous system. Figure 10
shows our statistical model separated into two
stages. In the first stage, the subjective value of

each alternative is estimated from past experi-
ence, and in the second stage a decision is
formed by comparing these estimates. It is
common to split the decision process in this
manner (e.g., Davis, Staddon, Machado, &
Palmer, 1993; Houston, Kacelnik, & McNa-
mara, 1982; Luce, 1959). As we have sketched
it, the first stage includes the effects of past
reinforcers, which we think of as providing
estimates of the rate of reinforcement. To see
this more clearly, we can write the logistic
regression in terms of the probability of choice
rather than the log odds,

p~
1

1zexp
P

a rR{rLð Þð Þ , ð6Þ

where we ignore past choices momentarily and
suppress trial subscripts for clarity. The terms
S a(rR 2 rL) encapsulate our assumptions
about the internal representations animals
form about recently obtained reinforcers.
Because the model is linear in the parameters,
the coefficients weighting past reinforcers can
be rescaled so they sum to 1. This equivalent
formulation has a simple interpretation; past
reinforcers are weighted to provide local
estimates of the difference in average reinforc-
er rate from each alternative. This estimate has

Fig. 10. Two-stage description of choice. The first stage involves valuation of each alternative based on past reinforcer
and choices, and possibly other factors like satiety. The second stage generates the choice by comparing the value of each
alternative and selecting one using a decision rule.
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units of reinforcer magnitude per trial, and is
passed to the second stage to form a choice
probability.

Many theoretical models of foraging and
repeated choice behavior assume that the rate
of prey encounter or reinforcement is a funda-
mental variable that animals use to achieve the
computational goals of maximizing fitness or
reinforcement (Stephens & Krebs, 1986). Rate
estimation is usually implemented by a weight-
ed average with exponential decay (Killeen,
1981, 1994), which captures the intuitive
notion that because natural environments are
nonstationary, recent events should weigh
more heavily in memory than long-past events
(Cowie, 1977). Alternative weightings have
been proposed. For example, Devenport and
Devenport (1994) propose a temporal weight-
ing rule that weights past reinforcers hyper-
bolically (with respect to units of time). In
Figure 11, we replot the coefficients for past
reinforcers along with examples of exponen-
tial and hyperbolic sequences of weights. The
variability between subjects precludes deter-
mining which particular form of weighting is
more appropriate for our data, but the general
shape of the reinforcer coefficients supports
the idea that animals represent reinforcement
rate using algorithms that approximate these
linear weightings.

How should we think about the effects of
past choices? The decision stage of many

choice models uses rules including simply
selecting the most valuable alternative (Herrn-
stein & Vaughan, 1980), matching choice
proportions to the local rates of reinforcement
(Kacelnik, Krebs, & Ens, 1987), and the
logistic function we have used, which is
commonly referred to as the softmax (Sutton
& Barto, 1998) or logit (Camerer & Ho, 1998)
decision rule. None of the models using these
decision rules explicitly allows for sequential
structure in choice behavior beyond that
induced by structure in the obtained reinforc-
ers. This is true for models using an exponen-
tially weighted average because all knowledge
about past reinforcers is represented by a single
number; this formulation thus possesses an
independence-of-path (Bush & Mosteller,
1955; Luce, 1959).

Models incorporating choice dependence
are motivated by the nature of the choice task
we used. Because the probability of reinforce-
ment grows geometrically with time or re-
sponses spent away from the lean alternative in
tasks like the one we used, it eventually pays to
choose that alternative, but because its prob-
ability is reset to its initial low value once
chosen it is never worth staying more than one
trial. Houston and McNamara (1981) prove
that reinforcer rate is maximized by repeating
a deterministic sequence; an optimal subject
would choose the rich alternative a fixed
number of times (dictated by the particular
schedules) followed by a single choice of the
lean alternative (see also Staddon et al., 1981).
Thus, behaving optimally in tasks like ours
requires counting the number of choices since
the last changeover. Empirical tests of the
hypothesis that animals use trial counting to
maximize reinforcement rate are equivocal,
with evidence for (Hinson & Staddon, 1983;
Shimp, 1966; Silberberg et al., 1978) and
against (Herrnstein, data published in de
Villiers, 1977; Heyman, 1979; Nevin, 1969,
1979) the hypothesis. This leaves the question
of optimality unresolved, but the evidence for
sequential structure in choice behavior is
interesting because models that only estimate
reinforcement rates are not designed to
generate these patterns. Machado (1993)
remedied this by incorporating short-term
memory for past responses into his behavioral
models. Appropriate use of recent memory for
past responses can generate tendencies to shift
away from, or to persist on, recently chosen

Fig. 11. Comparison of coefficients for past reinforcers
with exponential and hyperbolic weightings predicted by
theoretical choice models. Each of the four curves has
been normalized to unit area. The time constant of the
exponential is three trials, and the hyperbolic function is
given by the reciprocal of the trial number.
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alternatives (negative recency and positive
recency), and is necessary for producing
patterned sequences of responses. This cap-
tures the idea that one can only remember so
much information, but it is distinct from what
one does with that memory, which presumably
depends on reinforcement contingencies and
other factors (Glimcher, 2005; Neuringer,
2002).

Neurophysiology

One of the most interesting uses of the
behavioral models described above is that they
may provide insight into the underlying
neurobiological mechanism of choice, thus
allowing tests of the models at the mechanistic
level. As a starting point, a literal interpreta-
tion of models with the form in Figure 10
makes two predictions. First, certain brain
structures may implement a decision rule,
functioning to compare the subjective value
of each available alternative to generate
choice. Second, other brain structures may
implement valuation mechanisms, functioning
to encode the various components that define
value in a particular environment. For an
animal foraging for food, evaluating which
patch to forage at is a complex combination of
estimating the reinforcement rate at each
patch, the likelihood that an alternative patch
has recently become richer, the risk of pre-
dation, and so on. These variables must be
represented in the nervous system if they are
to affect choice, and neuroscientists are
beginning to test these predictions by combin-
ing behavioral experiments with techniques
such as single-unit electrophysiology and
functional magnetic resonance imaging
(fMRI).

A number of laboratories have focused on
the role of the parietal cortex in the decision
process. Single neurons in this cortical region
have been shown to encode the accumulation
of sensory evidence indicating which alterna-
tive will yield a reinforcer (Roitman & Shad-
len, 2002; Shadlen & Newsome, 2001; Z. M.
Williams, Elfar, Eskandar, Toth, & Assad,
2003) as well as the probability and magnitude
of reinforcement (Musallam, Corneil, Greger,
Scherberger, & Andersen, 2004; Platt &
Glimcher, 1999). Recently, Dorris and Glim-
cher (2004) and Sugrue et al. (2004) recorded
from parietal neurons while monkeys were
engaged in choice tasks with variable rein-

forcement probabilities. They found that the
activity of neurons in parietal cortex was
correlated with estimates of value derived by
fitting models using reinforcement rate to
predict the monkeys’ behavior (similar to
Figure 10, but without taking into account
past choices). These results indicate that
parietal cortex receives information about
both sensory and reinforcing aspects of the
environment.

The covariation of neural activity in the
parietal cortex with behaviorally relevant vari-
ables likely reflects computations carried out
in other brain areas. For example, the dopa-
minergic neurons in the substantia nigra pars
compacta (SNC) and the ventral tegmental
area (VTA) appear to be important for
estimating reinforcement rate. Experiments
with monkeys and humans have shown that
these neurons encode a prediction error, the
difference between the reinforcer expected
and the reinforcer obtained within a trial
(O’Doherty et al., 2004; Schultz, 1998). Bayer
and Glimcher (2005) linked SNC activity to
reinforcement-rate estimation using the expo-
nentially weighted average described above.
They reasoned that if the value of a choice
alternative is computed using an exponentially
weighted average,

vi~vi{1za ri{vi{1ð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
prediction error

,

and SNC neurons encoded the prediction
errors for these computations, then their
responses should be proportional to the
difference between the most recent reinforcer
(ri) and an exponentially weighted average of
all past reinforcers (vi21). They showed that
the number of action potentials discharged by
individual SNC neurons is proportional to the
magnitude of the difference between the
reinforcer expected (vi21) and the reinforcer
actually obtained (ri), thereby lending strong
support to the hypothesis that dopamine
neurons underlie the computation of pre-
diction error. These neurons send dense
projections to the prefrontal cortex and the
striatum, and current evidence suggests that
these areas may use a prediction error to
estimate reinforcer rate (Barraclough et al.,
2004; Haruno et al., 2004; O’Doherty et al.,
2004).
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Research is rapidly proceeding in a number
of brain areas, but one relatively unexplored
aspect is how animals integrate reinforcement
history with other aspects of their ongoing
behavior. We have shown that monkeys en-
gaged in a choice task appear to integrate both
past reinforcers and past choices. Incorporat-
ing memory for both of these elements was
necessary to account for the structured pat-
terns of choice behavior we observed. This is
important for guiding interpretation of the
physiological data; characterizing the effects of
past reinforcers and choices allows a finer
separation of these effects at the neural level.
Barraclough et al. (2004) present evidence
from a repeated-choice task that some neurons
in prefrontal cortex encode the identity of the
last response, independent of whether the last
response was reinforced or not. This raises the
intriguing possibility that frontal cortical areas
are important for evaluating what choice to
make next in light of what choices were made
in the past. This idea is consistent with
evidence that frontal cortex and the basal
ganglia—which are densely interconnected—
are important for the expression and learning
of motor sequences (Hikosaka et al., 1999;
Tanji, 2001; Tanji & Hoshi, 2001). Physiolog-
ical recordings from these brain areas within
the context of a choice task may reveal their
role in the generation of temporally extended
patterns of choice behavior.
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