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Summary

The midbrain dopamine neurons are hypothesized to
provide a physiological correlate of the reward pre-
diction error signal required by current models of
reinforcement learning. We examined the activity of
single dopamine neurons during a task in which sub-
jects learned by trial and error when to make an eye
movement for a juice reward. We found that these
neurons encoded the difference between the current
reward and a weighted average of previous rewards,
a reward prediction error, but only for outcomes that
were better than expected. Thus, the firing rate of
midbrain dopamine neurons is quantitatively pre-
dicted by theoretical descriptions of the reward pre-
diction error signal used in reinforcement learning
models for circumstances in which this signal has a
positive value. We also found that the dopamine sys-
tem continued to compute the reward prediction error
even when the behavioral policy of the animal was
only weakly influenced by this computation.

Introduction

Over the course of the last decade, significant theo-
retical and empirical evidence has accumulated sug-
gesting that the dopamine neurons of the mammalian
midbrain play a role in reinforcement learning. At a
theoretical level, reinforcement learning systems have
now been carefully studied, and the basic computa-
tional properties of simple systems of this type are
largely understood. At an empirical level, it has been
shown that the activity of dopamine neurons when ani-
mals undergo classical or operant conditioning is com-
patible with the notion that these neurons carry a re-
ward prediction error signal of the type required by
theoretical models of reinforcement learning. Very little
quantitative empirical evidence, however, has been
gathered to (1) determine the exact reward-related
computation performed by these neurons, (2) test the
extent to which dopamine activity alone could actually
supply the reward prediction error signal required by
reinforcement learning models, and (3) test the extent
to which dopamine activity may shape behavior when
animals rely on strategies that only weakly involve rein-
forcement learning.

Nearly all reinforcement learning models share a few
critical features. The models typically assume that while
*Correspondence: glimcher@cns.nyu.edu
learning in a task, for example, during operant condi-
tioning, the system maintains an estimate of the aver-
age value of each possible action. These estimates of
value, or value functions, encode the average amount of
reward that each action has produced in the past. At
each moment in time the animal, or more generally the
agent, is presumed to use a set of these value functions
to predict the rewards or punishments that any action
will yield. Any reward actually obtained after an action
is complete is then compared to this prediction. The
difference between these two values is typically re-
ferred to as the reward prediction error. The reward
prediction error is then multiplied by a constant ranging
between 0 and 1, the learning rate constant, and the
product of this operation is then added to the preexist-
ing value function in order to yield an updated and pre-
sumably more accurate reward prediction. Theoretical
work indicates that systems having these basic proper-
ties, given a set of reasonable constraints, accurately
approximate the true values of impending rewards in
an environment that does not change or changes only
slowly.

The reward prediction error signal thus plays a critical
role in reinforcement learning models. After every ac-
tion or event in the environment, the reward obtained
is compared to the reward that was predicted. If these
two quantities are equal, then the reward prediction er-
ror is zero; if they are not, the prediction error is nonzero
and can be used to update the value function. Thus,
an animal that receives an unpredictable juice reward
should experience a positive reward prediction error af-
ter each reward. In contrast, if the animal predicts that
a lever press will be followed by 1 ml of juice, the deliv-
ery of 1 ml of juice should produce no reward prediction
error. Importantly, however, systems of this type do not
necessarily account for all of the behavior produced by
all animals under all circumstances. If an animal faces
an environment in which a strategy of alternating se-
quentially between two responses yields a reward on
every trial, then the output of a reinforcement learning
system may be only part of the information required to
maximize rewards. Under these conditions a simple
(first order) reinforcement learning system might use
the reward prediction error after each action to cor-
rectly deduce that both responses yielded rewards with
a high probability but would be unable to determine
that it was the sequential structure of the responses
that actually yielded the rewards. This observation may
suggest the existence of higher-order reinforcement
learning mechanisms that integrate the reward predic-
tion error signal with additional information about the
structure of the environment, a point developed in Sut-
ton and Barto’s actor-critic model (Sutton and Barto,
1981).

Recently acquired physiological evidence strongly
suggests a parallel between the activity of dopamine-
containing neurons in the midbrain and the reward pre-
diction error term employed in reinforcement learning
models. In thirsty monkeys, for example, the dopamine
neurons of the substantia nigra pars compacta and
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ventral tegmental area produce bursts of action poten- a
tials in response to unexpected juice rewards and sup- i
pressions in firing rate when expected rewards do not p
occur (Mirenowicz and Schultz, 1994; Schultz et al., t
1993). In classical conditioning tasks, the first time a c
stimulus is followed by a reward, the dopamine neurons c
respond with a burst of action potentials after the re- l
ward. However, after repeated presentations of the t
stimulus with the reward, the dopamine neurons re- p
spond only after the presentation of a temporally un- w
predictable stimulus that signals a later reward. They h
do not respond after the reward itself, which has been r
accurately predicted because of the occurrence of the p
preceding stimulus. Similar results suggest a role for i
the dopamine neurons in learning during blocking ex- t
periments and during operant conditioning as well (Hol- a
lerman and Schultz, 1998; Kawagoe et al., 2003; Naka- r
hara et al., 2004; Satoh et al., 2003; Waelti et al., 2001). e
When animals must learn the values of actions in these t
tasks, the activity of the midbrain dopamine neurons t
carries a reward prediction error-like signal. In summary m
then, these results and many others are consistent with v
the hypothesis that the dopamine signal is a physiologi- m
cal instantiation of the reward prediction error signal: l
the difference between the reward an animal expects d
to receive and the reward it actually receives (Schultz e
et al., 1997). t

We were interested in extending our understanding c
of the relationship between these dopamine neurons 2
and the theoretically defined reward prediction error by m
determining what precise function of previous rewards i
best predicts the activity of these neurons. To this end, l
we recorded the activity of midbrain dopamine neurons W
while overtrained awake-behaving primates performed p
a saccadic timing task that might or might not have i
required a reinforcement learning system to solve. We t
hypothesized that, if we could determine the function
that related the reward history of the animal to the ac-

R
tivity of the dopamine neurons under these conditions,
we might be able to further test the hypothesis that

Bthese neurons carry a reward prediction error. Given a
Omore complete picture of the function that relates re-
twards to dopamine firing rates, we then hoped to ask
twhether this dopamine signal could, in fact, provide all
eof the reward prediction error information required by
Aan efficient reinforcement learning system. In other
cwords, we hoped to test the notion that the measured
cpattern of dopamine activity that we observed was suf-
hficient for implementing a complete reward prediction
serror of the type called for by theory. Finally, we hoped
mto behaviorally determine whether overtrained animals
sof the type typically used in studies of this kind rely on
sreinforcement learning systems for the production of
qthe overtrained behavior. We hypothesized that, under
ccircumstances in which animals employed an identifi-
eable behavioral policy that did not rely directly on a
rtrial-by-trial reinforcement learning-based estimate of
wthe value of an action, the activity of dopamine neurons
iand the actions of the animal would be only weakly
mlinked even if the reinforcement learning system contin-
eued to compute underlying value functions.
cOur findings suggest that the responses of midbrain
tdopamine neurons do indeed encode a signal of the

type required by reinforcement learning models. The s
ctivity of midbrain dopamine neurons during a fixed
nterval immediately after a reward is received or ex-
ected reflects an iteratively computed difference be-
ween a weighted average of the magnitudes of re-
ently received rewards and the magnitude of the
urrent reward. In our task, we were even able to estab-

ish the learning rate constant for this neuronal compu-
ation. When we attempted to determine whether the
attern of activity during this fixed postreward interval
as sufficient for a simple reinforcement learning model,
owever, we found that the representation of the theo-
etically defined reward prediction error was incom-
lete. The average firing rate of the dopamine neurons

n the postreward interval accurately carries informa-
ion about positive reward prediction errors but not
bout negative reward prediction errors; neuronal firing
ates behaved as if they rectified the reward prediction
rror. Although physiological mechanisms can be pos-
ulated that would correct this asymmetry, we note that
his asymmetry may be computationally important. It
ay be particularly important if reinforcement learning

ia the reward prediction error signal carried by dopa-
ine neurons is accomplished by dopamine-driven

ong-term synaptic potentiation. The possibility that the
opamine signal carries only positive reward prediction
rrors may imply the existence of an independent sys-
em carrying negative reward prediction errors that
ould drive long-term synaptic depression (Daw et al.,
002). Finally, we found that once our highly trained ani-
als had adopted a simple fixed strategy for perform-

ng our task, the activity of the dopamine-reinforcement
earning system was only weakly coupled to behavior.

e found that the dopamine system continued to com-
ute the reward prediction error even when the behav-

oral policy of the animal was only weakly influenced by
his computation.

esults

ehavior
ur monkey subjects were trained to perform a simple

ask that yielded rewards having a variety of magni-
udes, a saccadic timing task (Figure 1). At the start of
ach 4 s trial, the monkeys fixated a central stimulus.
n eccentric target was then illuminated at a single lo-
ation, and the animals were free to look at that ec-
entric target at any time during the 4 s trial. There was,
owever, only one interval during the trial in which a
accade to the eccentric target would yield a reinforce-
ent, and this interval was further subdivided into five

ubintervals. The earliest of these subintervals was as-
ociated with a 0.2 ml water reward, and each subse-
uent interval was associated with an additional in-
rement of 0.02 ml of fluid. Thus, if a saccade to the
ccentric target was executed at the beginning of the
einforced interval, the subject received a smaller re-
ard, and if the saccade was executed at the end of the

nterval, the subject received a larger reward. Subjects
aximized reward magnitude by determining when the

nd of this unsignaled rewarded interval occurred and
hoosing to make a saccade at that time. Finally, the
ime at which the reinforced interval occurred was
hifted unpredictably approximately every 100 trials,
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Figure 1. Saccade Timing Task

(Left) The events of an individual trial as a function of time. Animals
were reinforced for executing a saccade during an unsignaled tem-
poral window. The height of the reinforcement cartoon indicates
that there were five intervals during this window, each of which was
associated with an increasing reward size. The delay before the
rewarded temporal window was shifted between blocks of trials
without cuing the animals. (Right) The spatial configuration of the
fixation and target light-emitting diodes.
forcing the subjects to encounter shifting levels of re-
wards as they attempted to track the rewarded interval.

The animals were able to perform this task in a man-
ner that reliably yielded water rewards. Figure 2A plots
delays (in log seconds) selected by a single subject
during a typical session as a function of trial number.
The shaded rectangles on the graph indicate the time of
the reinforced intervals within each block. The darkness
gradient from the top to the bottom of each block indi-
cates the underlying reward gradient, with the darker
 side the rewarded interval they tended to produce ac-

Figure 2. Animals Choose Saccadic Laten-
cies for which They Will Be Reinforced

(A) Saccadic latencies plotted sequentially
from a single behavioral session. The gray
squares represent the extent of the rewarded
temporal window.
(B) Average saccadic latency for the last fifty
trials of each block, plotted as a function of
the time at which the interval associated with
the largest reward size began (error bars
showing standard deviation fit inside the
points).
(C) Log of the change in reaction time from
the current to the next trial (�RT) plotted as
a function of the log of the difference be-
tween the reaction time on the current trial
and the reaction time that would have pro-
vided the largest volume of juice (RT error).
Includes only trials from blocks in which the
best reaction time was the earliest one the
monkeys ever experienced (including the data
used to compute the average point labeled
“C”). Rewarded trials are in dark gray, unre-
warded trials are in light gray, and mean and
standard error are plotted in black.
(D) �RT plotted as a function of RT error, in-
cluding only trials from blocks in which the
best reaction time was the latest one the
monkeys ever experienced (including the data
used to compute the average point labeled
“D”). Rewarded trials are in dark gray, unre-
warded trials are in light gray, and mean and
standard error are plotted in black.
shading at the top of each block indicating the largest
available reward. Note that the subject manages, in
general, to select delays that yield rewards, but also
note that the size of the reward earned on each trial
varies across the range of possible reward values.

To quantify this behavior, Figure 2B plots the average
delay adopted by the subjects across all of the block
delays that we tested. Each point represents the
average delay during the last 50 trials of each block.
Each point incorporates at least ten blocks from two
monkeys. The error bars indicate the standard error of
the mean but, on this scale, do not extend beyond the
borders of the points. If the animals had perfectly maxi-
mized reward during the second half of each block,
then the points would all fall along the main diagonal.
Note that in general the responses of the animals ap-
proximate this strategy, although for blocks presented
at longer delays the animals tended to produce their
movement earlier than was optimal. Also note the size
of the standard errors, which indicate the low level of
variability in the animal’s responses at the end of each
of these blocks.

To better characterize the trial-by-trial actions of the
subjects at the end of each block, Figure 2C plots the
correction a subject should have adopted as a function
of the correction they did adopt for the block labeled
“C” in Figure 2B. Perfect corrections would lie along
the main diagonal. The rewarded interval during this
block was the earliest possible interval in the task, so
errors were always due to waiting too long, and correc-
tions were always to decrease reaction time. However,
note that when subjects made responses that lay out-
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curate corrections that brought them into the rewarded u
tinterval. Once subjects were within the overall re-

warded interval, however, corrections were only weakly a
wcorrelated with errors (dark points). This pattern was

also true for subjects’ reaction time choices during r
mblocks of trials in which the rewarded interval was the

latest possible interval in the task, as shown in Figure f
t2D. This pattern was observed for all blocks of trials,

not just the earliest and the latest. t
pIn summary, the monkeys were able to choose a

range of saccadic latencies that provided a reward on w
pevery trial, usually the largest ones. However, as the

interval occurred later in the trial, the animals were
tmore likely to choose a range of latencies that resulted

in smaller rewards (Figure 2B). They appeared to prefer r
ka smaller reward in exchange for a shorter waiting time.

Even during the earliest rewarded intervals, it appeared c
pthat the monkeys were more sensitive to whether or not

a reaction time resulted in a reward than the size of that r
rreward (Figures 2C and 2D). These behavioral results

suggest that, in this task, the animals learned to find e
wthe saccadic latency for which they would receive rein-

forcement, although the trial-by-trial mechanism by t
wwhich they accomplished this adjustment behaviorally

seemed not to reflect a precise compensatory process s
adriven by the magnitude of the reward received on the

preceding trial. c
a
tActivity of Individual Dopamine Neurons
rIn order to study the relationship between the re-
asponses of midbrain dopamine neurons and reward
ohistory, we recorded from 81 neurons while monkeys
pperformed the saccade timing task. For this report, we
sanalyzed the data from the 50 neurons for which we
dhad gathered at least 100 trials of the task (mean, 292
rtrials; range, 100 to 1100 trials; SD, 186 trials). Guide

tubes and electrodes were placed under real-time ul-
wtrasonographic guidance (Glimcher et al., 2001), and
uelectrodes were lowered through ventroposterior me-
odial thalamus prior to entering areas where dopamine
rneurons were presumed to be located. During record-
sing sessions, neurons were classified as dopaminergic
cbased on three criteria: they had relatively long tripha-
tsic action potentials, their baseline firing rates were rel-
uatively low (mean, 5.3 ± 1.5 impulses per second), and

they showed a phasic response to unpredicted fluid re-
wards (Figures 3A and 3B). A subset of these neurons,
which were typical of the population, were histologi-
cally localized to the substantia nigra pars compacta
and the ventral tegmental area (Figure 3C). w

tWhile monkeys were performing the saccade timing
task, all the neurons produced a baseline rate of activity o

sthat was modulated at two points during the trial. The
first was a burst in activity after the auditory tone that b

tsignaled trial onset, and the second was an increase or
decrease in rate following the completion of a saccade t

aimmediately after the onset of a period in which the
delivery of a reward could be anticipated. Figure 4 r

fshows the average response of a single neuron during
the task. Averages were produced by aligning indivi- c

adual trials at the time of the tone (left) and the time of
reward delivery (right). Plotted above the averages are t

erasters for a subset of the individual trials that were
sed to compute the averages. After the auditory tone,
his neuron showed a phasic increase in firing rate of
bout ten impulses per second, independent of all re-
ard contingences. The response patterns of this neu-

on were typical of the neurons that we recorded from:
ost neurons showed an increase in firing rate of about

ive to ten impulses per second following the auditory
one. These responses were fairly stereotyped under
hese conditions. We found no evidence that this signal
redicted the magnitude of the upcoming reward, a fact
hich likely reflects the temporal uncertainties of our
articular task (Schultz et al., 1997).
In contrast, the responses of this neuron following

he delivery of rewards were much more variable. These
esponses were largest during trials in which the mon-
ey received a large reward after having failed to re-
eive a reward for several trials, a situation that princi-
ally arose when the monkeys were searching for the

ewarded interval at the beginning of a new block and
eceiving rewards only infrequently. Following the deliv-
ry of a reward under these conditions, the neurons
ould reach peak firing rates as high as five or six times

heir baseline firing rates. During long stretches of re-
arded trials, the reward that would elicit a large re-
ponse early in the group of sequentially rewarded tri-
ls would elicit only a small response after periods of
onsistent reinforcement. In general, when the reward
monkey received on a particular trial was greater than

he reward he received on the previous trial, the neu-
ons were much more active than when the reward the
nimal received was smaller than the reward received
n the previous trial (Figure 4, right side). This observed
attern of activity was consistent with a simple error
ignal, suggesting that in this task the firing rates of
opamine neurons following reward delivery carried a

eward prediction error of some form.
In order to determine what function of previous re-
ards best predicted the activity of these neurons, we
sed a linear regression to determine what combination
f previous rewards best predicted neuronal firing
ates. This analysis eliminated the need for any as-
umptions, other than linearity, about the form of the
alculation that these neurons might reflect with regard
o reward history. It provided a set of weights (or β val-
es) of the following form:

β0 × (Rt) + β1 × (Rt−1) + β2 × (Rt−2) + … (1)
+ β10 × (Rt−10)

here Rt was the amount of fluid reward obtained on
he current trial, Rt − 1 was the amount of fluid reward
btained on the previous trial, and so on. The regres-
ion gave a single set of β values that described the
est rule for predicting the firing rate for any particular
rial from the recent history of rewards. The β values
hus yield a weighting function that explained how to
dditively combine the measured values of the last ten
ewards in order to best account for dopamine neuron
iring rates after the most recent reward had been re-
eived. For example, if the neuronal firing rate reflected
n error signal that was simply the difference between
he current and the previous reward, then it would be
xpected that the regression would yield a positive
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Figure 3. Dopamine Neurons Show a Char-
acteristic Response to Unpredicted Rewards

(A) The average response of a single dopa-
mine neuron to the delivery of an unpre-
dicted reward, aligned to the time of reward
delivery. Error bars are standard deviation of
the mean, and time bins are 20 ms long (n =
10 trials).
(B) The distribution of average firing rates
during a 150 ms interval starting 75 ms after
the delivery of an unpredicted reward,
shown in gray in (A), for all neurons in the
population. Mean = 26 Hz; standard devia-
tion = 9 Hz (n = 46).
(C) Histological localization of a subset of
dopamine neurons from this report. Circles
are locations of marking lesions placed at
the location of recorded neurons, and
dashes are estimated locations for addi-
tional neurons (where no lesions were made).
Distortions in these drawings accurately re-
flect a significant distortion of the anatomy
observed following the perfusion process.
The animal had suffered from a blockage of
the lateral ventricle during the period in
which the marking lesions were made. As a
result, the tissue was not sliced in the verti-
cal plane, and sections differ significantly
from canonical images.
(normalized) β values and then compared it to the firingtransformation of reward values in milliliters of water

Figure 4. Responses of a Dopamine Neuron
during the Saccade Timing Task

(Left) Average response of the neuron
aligned to the auditory tone that initiated the
trial; error bars represent standard error.
(Right) Average response of the neuron
aligned to the time of reward delivery; error
bars represent standard error. Plotted above
the averages are a randomly selected subset
of 40 trials from each condition as examples
of the raw data that were used to compute
the averages. (Both graphs) In black are tri-
als in which there was a large difference be-
tween the size of the reward delivered during
the trial and the size of the reward during the
previous trial (n = 300). In gray are trials in
which there was a small difference in size
between the current and previous rewards
(n = 289). For reference, the legend un-
derneath represents the events of the trial as
a function of time.
value, for example, 1.0 and an identical negative value,
−1.0, for β0 and β1, respectively, and 0 for all other β
values. However, if the firing rates of the neurons re-
flected the difference between the current reward and
the average of the values of last ten rewards, then the
regression would be expected to yield a positive value
for β0 and negative values of one-tenth that magnitude
for β1 through β10.

The results of the regression analysis for a single do-
pamine neuron are shown in Figure 5A. The weight for
the current reward is a large positive number, while the
weights for each of the preceding five rewards are
negative values between −30 and zero, and the weights
for rewards more than five trials into the past are indis-
tinguishable from zero. These weights describe the
directly into dopamine firing rates represented as
spikes per second. By normalizing the values of all the
weights by dividing them by the value of the first
weight, we can examine whether the relative weights
describe a computation that is proportional to a weighted
average of previous rewards. The inset in Figure 5A
shows the regression coefficients plotted in this fash-
ion, as they might be used to compute a weighted
average.

In order to look at the relationship between firing rate
and this computation that the neurons were apparently
encoding, and to examine the linearity of the relation-
ship between reward history and firing rate, for each
trial we multiplied the values of the current and each
of the previous ten rewards by the regression-derived
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Figure 5. Multiple Linear Regression of Neuronal Firing Rate and w
Reward History: Single Neuron t
(A) Coefficients from multiple linear regression for a single neuron
(L041103). (Inset) Last ten coefficients plotted as they would be a
used to compute a weighted average. Each one is divided by the o
value of the first coefficient. Error bars represent the 95% confi-

ndence intervals. R-squared = 0.50; p < 0.00001; n = 1007 trials.
s(B) Firing rate plotted as a function of weighted reward history.

Weighted reward history computed using the coefficients shown in o
(A) after they have been normalized by dividing all coefficients by t
the value of the first. Error bars represent standard error. s
(C) Coefficients from multiple linear regression for a single neuron a
(C032504). (Inset) Last ten coefficients plotted as they would be

pused to compute a weighted average. Error bars represent the 95%
rconfidence intervals. R-squared = 0.42; p < 0.00001; n = 295 trials.

(D) Firing rate plotted as a function of weighted reward history. a
Weighted reward history computed using normalized regression w
coefficients shown in (C). Error bars represent standard error. b
(E) Coefficients from multiple linear regression for all neurons com- w
bined. (Inset) Last ten coefficients plotted as they would be used

rto compute a weighted average. Error bars represent the 95% con-
ffidence intervals. R-squared = 0.21; p < 0.0001; n = 13919 trials.

(F) Firing rate plotted as a function of weighted reward history. p
Weighted reward history computed using normalized regression n
coefficients shown in (E). Error bars represent standard error. r

i

trate on that trial. Figure 5B shows firing rate plotted

as a function of the trial-by-trial weighted average of c
drewards specified by the linear regression as in Figure

5A. If the underlying function that the regression ana- n
hlyzed had been entirely linear, these data points would

all fall along a straight line of slope 1. Interestingly, for r
dall values of this weighted reward history greater than

−0.1, there is a roughly linear relationship with neuronal a
iring rate rising to three or four times baseline, sug-
esting that, in this range, this neuron linearly encodes
he weighted averaging calculation described by the β
eights. However, for values of this calculation less

han −0.1, there appears to be no modulation in the
euronal response. This lack of modulation seems to
ccur because the neuron reaches the bottom end
f its dynamic range; it produces zero spikes during
ur measured interval for all large negative values of
eighted reward history. These results indicate that the

iring rate of this neuron during the rewarded interval is
uantitatively correlated with the difference between
he current reward and a recency-weighted average of
revious rewards for a limited range of reward histories.
Figure 5C shows the set of weights derived by linear

egression for another individual neuron. For this neu-
on, there is also a large positive weight for the current
eward and negative weights for the previous rewards
hat approach zero for rewards farther in the past. This
euron also shows a nearly linear relationship between
eighted reward history and firing rate, but again there

s a rectification for very negative values of the calcula-
ion, suggesting that the firing rate of this neuron during
he postreward interval carries a signal encoding this
alculation only for positive values (Figure 5D).

ctivity of the Neuronal Population
his pattern of neuronal responses, in which firing rate
as correlated with the difference between the value of

he current reward and a recency-weighted average of
he previous rewards, was characteristic of nearly all
f our neurons. The responses of 44 out of 50 neurons
ere significantly (p < 0.01) modulated by reward his-

ory, with a mean R-squared value of 0.29 (SD = 0.15).
We also performed a single multiple regression

nalysis on combined data from all of the neurons in
ur population. In order to combine data from multiple
eurons, we normalized the firing rates of each cell by
ubtracting from them the average baseline firing rate
f that cell and compiled the corresponding reward his-
ory for each trial. We then performed a single regres-
ion of normalized firing rate against reward history for
ll of these trials. Figure 5E shows the combination of
revious rewards that best predicts the change in neu-

onal firing rate from baseline levels, for all trials from
ll cells. When this large data set is used, the derived
eights describe a signal computed as the difference
etween the value of the current reward and a recency-
eighted average of the values of the last six or seven

ewards. Plotting this weighted reward history against
iring rate (Figure 5F), there is a linear relationship for
ositive values of weighted reward history, but not for
egative values below about −0.1. This is similar to the
esult we show in the single neuron examples, suggest-
ng that the population of dopamine neurons encodes
he difference between the current reward and a re-
ency-weighted average of past rewards. However, ad-
itional data have not diminished the rectification in the
euronal response for very negative weighted reward
istory values. The firing rates of these dopamine neu-
ons at the expected time of reward do not encode the
ifference between the value of the current reward and
recency-weighted average of the values of the last
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six or seven rewards when this value is significantly
negative.

In order to further examine this apparent rectification,
we performed the multiple regression for firing rate
against reward history, separating out trials on which
the firing rate was below baseline or above baseline.
The results of these regressions are shown in Figure
6A. The regression weights for trials with firing rates
above baseline (plotted in black) are quite similar to
those observed for the population as a whole. However,
for trials with reward interval firing rates below baseline,
the neuronal firing rate was correlated only with the cur-
rent reward and a constant offset term (not shown in
the figure) reflecting the tonic firing rate of the neuron.
There is no significant relationship between firing rate
during the reward interval and the difference between
the value of the current reward and a recency-weighted
average of the values of the last six or seven rewards.

We also examined the possibility that the occurrence
of repeated identical rewards might have some effect
on the results of our regression, since animals often got
the same reward on multiple successive trials. To do
this, we performed the multiple regression using only
the first 20 trials of each block (when the likelihood of
sequential rewards of the same magnitude was low)
and the last 20 trials of each block (when the likelihood
of sequential rewards of the same magnitude was high).
Note that the regression weights for the first 20 trials of
each block look similar to the weighting function de-
rived for the complete data set (Figures 6B and 5E).
While the regression weights for the last 20 trials of
each block also broadly look similar, only two trials con-
tribute significantly to the weighting function. Under
these conditions, the recency-weighted average ap-
pears to be occurring over a shorter time interval. The
R-squared value for the regression using the first 20 tri-
Figure 6. Neuronal Firing Rates Are Better Correlated with Reward
History When Firing Rates Are above Baseline, and When There Is
Low Correlation between Sequential Rewards

(A) Coefficients from multiple linear regression for all cells. Plotted
in black are the results of the regression including only trials with
firing rate above baseline (R-squared = 0.16; p < 0.00001; n = 10449
trials). Plotted in gray are the results of the regression including
only trials below baseline (R-squared = 0.03; p < 0.00001; n = 3966
trials). Error bars represent the 95% confidence intervals.
(B) Coefficients from multiple linear regression for all cells. Plotted
in black are the results of the regression including only the first 20
trials of each block (R-squared = 0.32; p < 0.00001; n = 3100 trials).
Plotted in gray are the results of the regression including only the
last 20 trials of each block (R-squared = 0.09; p < 0.00001; n = 3180
trials). Error bars represent the 95% confidence intervals.
als of each block is greater than that using the last 20
trials of each block.

Neuronal Activity and Choice Behavior
As Figure 2C indicates, immediately after block switches
the monkeys tended to search for the rewarded interval
by moving toward intermediate delays regardless of the
mean delay they were currently employing (longer de-
lays if transitioning from an early reward block or shorter
delays if transitioning from a late reward block). Once a
reward of any size had been obtained, the animals
shifted slowly, and without any obvious trial-by-trial
progression, toward delays that yielded larger rewards.
In order to determine whether information encoded in
the neuronal responses was correlated with these pat-
terns of delay selection, we performed the following ad-
ditional analyses.

To assess whether firing rate was directly correlated
with the behavioral delay selected by the animal on the
current trial, we added the temporal subinterval within
which the current saccade was produced as an addi-
tional parameter to our linear regression. If the firing
rates of the dopamine neurons effectively kept track of
the difference between the reward just obtained and a
weighted average of previous rewards as a function of
the delay (or action) that the animals had just produced
then this term should have added significant statistical
power to our regression. Figure 7A shows the R-squared
values for each neuron in the population when the re-
gression included and did not include what delay the
animal selected on the subsequent trial. All the cells fall
close to the identity line, indicating that neuronal firing
rates were not correlated with when the animal made
its response.

To ask this same question in another way, we also
determined whether neuronal firing rate was better ac-
counted for by a reward history composed only of trials
on which the animal had produced a similar action,
those trials during which the saccades were all made
within the same subinterval. This analysis was intended
to determine whether the neurons separately encoded
reward information about saccades initiated at different
times. Figure 7B shows the R-squared value for each
neuron from a regression using this interval-grouped re-
ward history plotted as a function of the R-squared
value from the standard reward history regression. For
almost every neuron, the interval-grouped regression
accounted for much less of the variance in the firing
rate. The small but nonzero R-squared values resulting
from the interval-grouped reward history represent the
amount of variance accounted for by the magnitude of
the current reward.

We also performed both of these analyses using in-
formation about the timing of the subsequent saccade,
in an effort to determine whether these neurons en-
coded predictive information about the upcoming trial
rather than information about the current trial. In neither
case did this variable contribute significantly to neu-
ronal firing rate. Taken together, these results suggest
that, during our task, the firing rates of the neurons did
not encode information about the time at which the pre-
ceding or subsequent saccade was executed even
though the information that they carried clearly related
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Figure 7. Neuronal Responses Do Not Encode Temporal Properties
of the Saccade

(A) R-squared values for individual neurons from regressions with
the temporal interval in which the saccade was executed added as

Fan additional variable to the regression plotted as a function of the
cR-squared values for the regression using reward history only.

(B) R-squared values for individual neurons from regressions using (
only saccades with the same temporal interval in which the sac- a
cade was executed to compose the reward history plotted as a R
function of the R-squared values for the regression using a sequen- t
tial reward history. m

p
t

e

to the value of the saccade irrespective of the time at R
which it was executed. o

tIn order to examine the relationship between the ani-
tmals’ behavioral choices and the neuronal signals, we
kplotted the increment in reaction time on the previous
g

trial as a function of the difference between the current r
reward and the weighted sum of past rewards com- 0

rputed by our regressions (Figures 8A and 8C). We did
0this separately for blocks of trials with different re-
iwarded intervals in order to ensure that the behaviorally

observed differences in time preference did not ob-
scure any effects we might see. (The figures show only d
the earliest interval and latest interval to represent the d
range of what was observed.) These graphs allowed us
to determine whether there was a relationship between t
the reward-related signal encoded by the neurons and b
the choice of reaction time made by the animal on the 8
next trial. Perhaps surprisingly, there was no systematic t
relationship between reward prediction error and change t
in reaction time. Thus, the reward-related neuronal sig- p
nal provided no information about how long the animal r
had waited before making a movement and appears t

hnot to have been used by the animals, in our task, to
igure 8. Monkeys Use Information to Perform the Delayed Sac-
ade Task that Is Not Encoded in Neuronal Firing Rates

All plots) Rewarded trials are in dark gray, and unrewarded trials
re in light gray. Mean and standard error are plotted in black. (A)
eward prediction error plotted as a function of RT error for all

rials in which the target reaction time was the earliest one the
onkeys had ever experienced. (B) Change in reaction time (�RT)
lotted as a function of reward prediction error for all trials in which

he target reaction time was the earliest one the monkeys had ever
xperienced. (C) Reward prediction error plotted as a function of
T error for all trials in which the target reaction time was the latest
ne the monkeys had ever experienced. (D) Change in reaction
ime (�RT) plotted as a function of reward prediction error for all
rials in which the target reaction time was the latest one the mon-
eys had ever experienced. (E) Coefficients from multiple linear re-
ression for all cells. Plotted in dark gray are the results of the
egression including only rewarded trials (R-squared = 0.43; p <
.00001; n = 12016 trials). Plotted in light gray are the results of the
egression including only unrewarded trials (R-squared = 0.22; p <
.00001; n = 2399 trials). Error bars represent the 95% confidence

ntervals.
ecide how long to wait to make their eye movement
uring the next trial.
Finally, we examined the relationship between reac-

ion time error and the reward-related signal computed
y the neuronally derived regression. Figures 8B and
D show that there was no systematic relationship be-
ween these two quantities either. These plots suggest
hat, for rewarded trials (in dark gray), there was a weak
ositive association between reaction time error and

eward prediction error but that for unrewarded trials
here was no such association. It should be noted,
owever, that because reward prediction errors do not
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map uniquely to optimal changes in reaction time when
no reward information is available, they are in principle
insufficient feedback for driving changes in reaction
time following unrewarded eye movements.

The observation that the correlation between the size
of the change in reaction time and the difference be-
tween the chosen and best reaction times was strong-
est when the relationship between reaction time error
and reward prediction error was weakest suggests that
the animals used information other than the activity of
the dopamine neurons to decide when to make their
movements in this task. In order to test this hypothesis
more explicitly, we performed the multiple regression
analysis on all of our neuronal data again, this time sep-
arating rewarded trials (show in dark gray in all panels
of Figure 8) and unrewarded trials (shown in light gray in
all panels in Figure 8). Note that the regression weights
shown in Figure 8E indicate that, for rewarded trials,
the firing rate of the neuron encoded information about
the reward history, while for unrewarded trials, the firing
rate of the neuron encoded information only about the
current trial. These data indicate that the dopamine
neurons carry information about the reward history pri-
marily for trials during which the animal received a re-
ward in this task. However, the animals appeared to
adopt a strategy of changing their behavior most dras-
tically when they did not receive a reward.

Taken together, these results present an interesting
dichotomy. The dopamine signal seems to be an effi-
cient way to assess the value of making a saccade to
the visual target irrespective of when that saccade is
made. From this signal, it would be possible, as will be
explained in more detail below, to compute the average
value of that movement. However, for deciding pre-
cisely when to make the movement, the animals seem
to be employing a different mechanism. The behavioral
strategy that they employed seems to be one that can-
not be accounted for by the pattern of dopamine activ-
ity, or perhaps even by the activity of any reinforcement
learning system.

Discussion

Relation of Firing Rate and Reward History
We studied the responses of dopamine neurons during
a task in which the rewards obtained for taking the
same action, making a particular saccadic eye move-
ment, were constantly varying. Immediately after the
action was complete, the time at which a reward might
or might not be delivered on a given trial, we deter-
mined the linear function that related reward history to
average neuronal firing rate during this interval. This
function, derived by linear regression, computed the
difference between the value of the reward received on
the current trial and a weighted average of the values
of the previous seven rewards. Recent rewards contrib-
uted to this average more than earlier rewards, in what
approximated an exponentially decaying fashion.

When we used the output of this function, derived
from a linear regression, to predict the activity of dopa-
mine neurons, we found an interesting nonlinearity. The
output of the function accurately predicted dopamine
firing rates when the value of the current reward was
greater than the weighted average of previous rewards.
However, when the value of the current reward was sig-
nificantly less than the weighted average of previous
rewards (which occurred principally when the animal
received no reward) the dopamine neurons always re-
sponded with the same spike rate: 0 Hz.

The function we derived that relates dopamine neu-
ron activity to the reward history associated with the
completion of the single action that our animals pro-
duced bears a striking resemblance to the exponen-
tially weighted average used by many models of rein-
forcement learning (Bush and Mosteller, 1955; Rescorla
and Wagner, 1972; Sutton and Barto, 1981). In ap-
proaches of this type, for example, the widely used
model of Sutton and Barto (1998), an animal’s current
estimate of the value of a state of the environment (Vt)
is computed by taking the difference between the value
of the most recently acquired reward (Rt) and a
weighted sum of the values of previous rewards (Vt − 1),
the reward prediction error. The reward prediction is
then multiplied by a learning rate constant (α) and used
additively to update the animal’s estimate of the value
of a state:

Vt = Vt−1 + α[Rt− Vt−1] (2)

In practice, the computation is presumed to be per-
formed iteratively, V being updated incrementally once
after every action or stimulus. This iterative process, in
which α has a value of less than 1, results in more re-
cent rewards having a larger influence on the value
function, V, than rewards obtained farther in the past.
More specifically, the iterative calculation yields a
weighted average with an exponential rate of decay
that is controlled by the size of the α parameter.

A number of researchers have suggested that the ac-
tivity of dopamine neurons may serve a very specific
role in reinforcement learning—it may carry the reward
prediction error. While a large body of evidence sup-
ports this hypothesis qualitatively, we can test this hy-
pothesis more quantitatively by comparing the function
we derived from the dopamine neurons to the func-
tional form of the reward prediction error specified in
Equation 1. Figure 9 shows the weighting functions that
a theoretical reward prediction error (α[Rt − Vt − 1])
would employ. In this particular example, α has been
set to 0.5 in gray and 0.7 in black. Note that the general
shape of these functions is similar to the empirical
functions derived by linear regression of our data set
(Figure 5), with a large positive contribution by the re-
ward that has just been received on the current trial,
and a negative contribution with an exponential decay
for each preceding trial. In summary then, we found
that the results of the linear regression described a
computation that was quite similar to the computations
employed to derive the reward prediction error signal
in reinforcement learning models. This further supports
the hypothesis that the dopamine neurons of the mid-
brain encode, in firing rate, a reward prediction error
signal that could be used to drive a reinforcement
learning system.

To better relate our data to reinforcement learning
theory, we also fit the relationship between dopamine
firing rates and reward history using an exponential
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Figure 9. Theoretical Reward Prediction Error Computations s
Value of reward prediction error (α[Rt − Vt − 1]) computed using the d
following equation: Vt = Vt − 1 + α[Rt − Vt − 1]. Plotted in black, α =

d0.5; plotted in gray, α = 0.7. A unit value reward has been simulated
1during trial t, no rewards for the next ten trials.
n

pfunction of the type described by Equation 1 to deter-
smine how it would describe the weighting of reward
rhistory in our experiment. Using an exponent and an

offset parameter, we found that the function that cap-
mtured the most variance in the firing rate data obtained
oduring our task had an exponent equal to 0.7, a physio-
mlogically determined estimate of the α parameter under
hthe conditions we studied.
tIn most models, the reward prediction error function
tis continuous for a wide range of both negative and
mpositive values. The finding that the firing rates of these
mdopamine neurons after a reward was expected do not
tencode a negative reward prediction error suggests
athat there may be limits to the information encoded by
“these neurons. Negative reward prediction errors occur

when the reward obtained is less than the reward that
fwould be predicted by the exponentially weighted
iaverage of previous rewards. This may reflect a con-
estraint imposed on dopamine neurons by their small
rdynamic range in firing rates, and their low baseline fir-
ming rates.
lIn any case, it is important to note that models of
ereinforcement learning always encode an equal range
bof positive and negative reward prediction errors, which
tdopamine firing rates in the fixed duration postreward
linterval do not encode. This is a point of significant
tphysiological relevance. Most physiological models of
ireinforcement learning suggest that when the reward
rprediction error is positive active neurons in the basal
nganglia undergo long-term potentiation, strengthening
rthe synaptic connections that produced the reinforced
ebehavior. When the reward prediction error is negative,
sin contrast, it is typically hypothesized that active con-
dnections are decremented in strength, presumably by a

process of long-term depression. Given that dopamine
Rspike rates in the postreward interval seem only to en-
Tcode positive reward prediction errors and that dopa-
fmine is known to produce long-term potentiation under
fsome conditions, there may be reason to suspect that
tdopamine activity is uniquely associated with the posi-
itive reward prediction error term of reinforcement learn-

ing models. t
In support of this possibility, it has been previously
roposed that serotonin neurons of the brainstem may
rovide signals about negative outcomes (Daw et al.,
002), serving as an opponent process to these dopa-
ine neurons. Although little is known about the signals

ncoded by individual serotonin neurons, there is some
vidence suggesting that this neurotransmitter plays an

mportant role in the control of behavior by aversive
vents, punishments, and losses (Deakin, 1983; Rogers
t al., 2003). For example, lesions of the serotonin sys-
em increase the probability that animals will switch be-
ween two different reinforcement schedules, suggest-
ng a decrease in the effectiveness of the penalty
ssociated with switching (Al-Ruwaitea et al., 1999). It
as also been shown that animals with lesions of the
erotonin system have difficulty acquiring stimulus as-
ociations that require the inhibition of a response, and
ifficulty inhibiting the response if the lesion is pro-
uced following training (Harrison et al., 1999; Soubrie,
986). Further examination of the responses of seroto-
in neurons during learning may yield insight into the
otential synergy between these two neurotransmitter
ystems and may test the hypothesis that serotonin
epresents information about highly negative outcomes.

This finding may also have implications for the asym-
etry in sensitivity to losses and gains that has been
bserved in both human and animal subjects (Kahne-
an and Tversky, 1979; Marsh and Kacelnik, 2002). It

as long been known by psychologists and economists
hat people are generally more risk averse for losses
han for gains (Kahneman and Tversky, 1979). If infor-
ation about losses is encoded separately from infor-
ation about gains, it raises the possibility that these

wo different systems could be calibrated separately,
potential physiological mechanism for this observed

irrationality” in human and animal decision making.
It is, however, important to note that two important

actors may complicate this interpretation of our find-
ngs. First, our sample of negative reward prediction
rrors is mostly made up of trials on which the animal
eceived no reward. While current models of reinforce-
ent learning do not predict the existence of any pecu-

iar discontinuity or nonlinearity in the reward prediction
rror when reward is precisely equal to zero, this may
e important. Our observation that essentially all nega-
ive reward prediction errors are associated with si-
ence by the dopamine neurons derives from a data set
hat oversamples this particular condition. Second, it is
mportant to note that the firing rates of dopamine neu-
ons during the fixed duration postreward interval may
ot be the only mechanism by which dopamine neu-
ons can signal the reward prediction error. Other prop-
rties, like the interspike interval, may still allow target
tructures to derive the reward prediction error from
opamine neuron activity.

ole of Dopamine in the Saccade Timing Task
he behavioral data that we gathered for this study, un-
ortunately, suggests that, for fully trained animals per-
orming the saccade timing task, neither dopamine ac-
ivity in particular nor reinforcement learning algorithms
n general play a particularly important role in helping
he subjects to decide when to move. Information
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about the time at which the preceding or subsequent
saccade was executed did not appear to be included
in the linear computation represented by the dopamine
spike rate, and this information did not seem to signifi-
cantly influence behavior. Instead, the animals ap-
peared to adopt a fairly stereotyped strategy of search-
ing toward the middle of the 4 s trial interval when no
reward was received, a situation that typically occurs
immediately after the unsignaled block switches. We
believe that this draws attention to an important point.
It highlights the preexisting conclusion that reinforce-
ment learning mechanisms are not the only processes
that guide behavior. This is a point that Sutton and
Barto (1981) made when they developed their actor-
critic model. Although this model is now a standard ele-
ment in many reinforcement learning studies, the full
model, which does include a reinforcement learning
module, also relies on a second set of mechanisms for
producing actions. The other mechanisms, broadly
speaking, encode rules and policies for producing be-
havior given the current state of the reinforcement
learning system. In our study, it appears from both the
behavioral and physiological data that a system of this
type governs behavior when the animals make their
saccades in our task.

Pretrial Activity in Dopamine Neurons
Our data also indicate that there is a consistent in-
crease in the firing rates of midbrain dopamine neurons
immediately following the auditory stimulus that alerted
the subjects to the onset of each trial. We found, how-
ever, that this early increase was not quantitatively re-
lated to the recent reward history of the monkeys. In
contrast, other physiological and theoretical studies
have shown a different result. When a tone predicts a
reward at a fixed latency, dopamine neurons and some
classes of reward prediction errors are active after the
tone in a way correlated with the overall likelihood that
the stimulus will be followed by a reward (Fiorillo et al.,
2003). The insensitivity to recent reward history that we
observed after the tone in our experiments may reflect,
amongst other things, the fact that in our task the tem-
poral intervals between the tone initiating one trial and
the tone initiating the next were very similar. When one
stimulus accurately predicts the occurrence in time of
a later stimulus that also predicts a reward, it has been
shown that dopamine activity after learning is complete
is primarily associated with the earlier reward (Ljung-
berg et al., 1992; Montague and Berns, 2002). Although
there is no way to be certain from these data, it seems
possible that our failure to observe a relationship be-
tween the number of action potentials produced at the
onset of a trial and the reward history of the animal
may reflect the highly stereotyped intertrial timing in our
task. It is also interesting to note that previous studies
demonstrating a relationship of dopamine responses to
conditioned stimuli during operant tasks have shown
that greater neuronal responses to a conditioned stimu-
lus are associated with reduced reaction times (e.g.,
Satoh et al., 2003). However, in the context of our ex-
periment, a strong correlation of this type would pre-
vent the animals from successfully performing the task.
Insight from Parkinson’s Disease
Patients suffering from Parkinson’s disease exhibit a
broad constellation of symptoms that are largely due to
the death of dopamine neurons in the SNc. In addition
to the readily apparent motor deficits, it has been
known for some time that Parkinson’s disease patients
also have difficulty performing tasks that require learn-
ing based on probabilistic outcomes (Packard and
Knowlton, 2002). The finding that the dopamine system
encodes only outcomes that are better than expected
suggests that Parkinson’s disease patients may be un-
able to perform such activities because there is an im-
balance between feedback about negative and positive
outcomes, a hypothesis that has recently begun to be
tested (Frank et al., 2004). Since the dopamine system
is damaged, while other brain systems are intact (par-
ticularly during early stages of the disease), the repre-
sentations of negative outcomes are likely to be much
more reliable than those of positive outcomes. As a re-
sult, it may be that patients have difficulty learning as-
sociations based on reinforcements resulting from cor-
rect responses but may still be quite sensitive to the
results of incorrect responses. In line with this hypothe-
sis, Parkinson’s disease patients generally show a de-
creased ability to learn probabilistic associations be-
tween stimuli and outcomes (Knowlton et al., 1996) but
exhibit a relatively normal ability to perform reversals of
already learned probabilistic associations (Cools et al.,
2001). Taken together with the physiological results that
we have presented, the selective pattern of behavioral
impairments observed in Parkinson’s disease patients
may further suggest the existence of multiple systems
for encoding positive and negative errors in reward pre-
diction.

Conclusions
We have shown that the firing rates of dopamine neu-
rons following the delivery of a reward encode a com-
putation reflecting the difference between the current
reward and a recency-weighted average of previous re-
wards. This finding corresponds to the predictions of
many current theories of conditioning. However, unlike
these models, we have also shown that there may be
limits to the range in which this signal veridically repre-
sents the reward contingencies of the environment.
Taken together, these findings support and extend the
hypothesis (Schultz et al., 1997) that midbrain dopa-
mine neurons encode a reward prediction error signal
of the type required by most models of reinforcement
learning.

Experimental Procedures

Two male rhesus macaques (Macaca mulatta) were used as sub-
jects. All animal procedures were developed in association with
the University Veterinarian, approved by the New York University
Institutional Animal Care and Use Committee, and designed and
conducted in compliance with the Public Health Service’s Guide for
the Care and Use of Laboratory Animals. All surgical and training
procedures were performed using standard protocols that have
been described in detail previously (Handel and Glimcher, 1997).

Task
Monkeys were trained to perform a saccade timing task in which
they had to learn, by trial and error, when to initiate a saccade to



Neuron
140
an eccentric target without an external go cue. Saccade timing tri- a
gals (Figure 1) began with an audible beep. Three hundred milli-

seconds later, a central light-emitting diode (LED), which appeared a
wyellow to normal human observers, was illuminated, and the sub-

ject was required to align gaze with this stimulus (±3°) within 1000 i
ms. Three hundred milliseconds after gaze was aligned with this
central LED, it turned red, and a single red eccentric LED was illu- A
minated at 10° of vertical elevation (the location of the target was
identical during all experiments). Simultaneously, a timer was W
started to ensure that all trials lasted exactly 4 s from the time a
that the eccentric LED was illuminated. During that 4 s interval, the G
subject could initiate a saccade to the eccentric target at any time. p
After gaze was shifted into alignment with the eccentric LED, the i
subject was required to maintain gaze for another 250 ms. Both
LEDs would then be extinguished, and a reward would be delivered

Rif the saccade had been executed at the appropriate time. However,
Ra new trial would not begin until the timer indicated that the 4 s in-
Aterval (which therefore included the intertrial interval) was over.
PDuring each trial, the subject received a reward if he executed

the saccade during an unsignaled temporal window that was em-
Rbedded in the 4 s interval. From the beginning to the end of the

window, the volume of liquid reward that the animal could earn
Aincreased in five sequential time steps, from 0.2 ml to 0.28 ml. In
border to ensure that the subjects’ performance was not limited by
cintervals shorter than their ability to discriminate temporal differ-
Pences, based on extensive previous studies of interval timing (Gal-
Blistel and Gibbon, 2000) the length of the window was scaled loga-
(rithmically as it was moved later in the trial. There were thus 11

possible locations for the rewarded window, which ranged in dura- C
tion from 125 to 2800 ms. The temporal position of the interval was E
shifted between blocks of trials in an uncued manner, thus requir- a
ing the animal to learn which range of saccadic latencies would be C
rewarded during each block. In order to discourage the animals D
from anticipating block changes, there was a fixed 5% chance that b
the block would end on every trial after the 90th, although any

Dblock that reached a length of 125 trials was automatically termi-
anated.
F
o

Data Analysis e
For each saccade timing trial during which the animal made a sac-

F
cade that aligned gaze with the eccentric target, we recorded how

b
long the animal had waited to make the saccade, the interval dur-

3
ing which the saccade would be rewarded on that trial, the volume

Gof liquid reward that the animal received, and the firing rate of the
Pneuron under study during three different intervals: a 50 ms base-

line interval ending at the onset of the beep that initiated the trial; G
Ma 100 ms beep interval starting 50 ms after the beep that initiated

the trial; and a 150 ms reward interval beginning 75 ms after the p
offset of the eccentric target (which marked the time at which the H
reinforcement was delivered on rewarded trials). c

In order to determine how previous rewards contributed to the f
firing rate of the neuron on each trial, we created a reward history

H
for each trial, which consisted of the value of the reward (in ml of

t
the water) that the animal received on that trial, as well as the

s
amount of water he had received for each of the previous 20 trials.

t
This allowed us to perform a multiple linear regression on firing rate

Hand reward history. We used least-squares minimization to deter-
amine what linear combination of previous rewards best predicted
Nneuronal firing rate during the reward interval. The regression gave
Kus both a set of weights describing the contribution of each reward
oto the firing rate of the neuron, and how much of the variance in

the firing rate was accounted for by reward history. In further analy- K
ses, the interval during which the saccade occurred was also d
added to the multiple regression analysis to determine whether this m
time-related variable accounted for a significant amount of firing N
rate variance. We also performed a regression on firing rate and

K
reward history where the reward history was based only on the

h
trials during which the saccade occurred during the same interval.

LFor some neurons, perievent time histograms were also gener-
mated to examine the temporal relationships between modulations
Jin neuronal activity, variance in neuronal response rate, and signifi-

cant task events. For each perievent time histogram, we averaged M
sthe firing rate of the neuron in 20 ms bins and plotted these aver-
ges as a function of time. For each neuron, two histograms were
enerated: one centered on the time when the auditory tone initi-
ted the trial, and one centered on the time at which reinforcement
as delivered (or would have been delivered, in the case of trials

n which the saccade was outside of the rewarded interval).
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