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R E V I E W

Neuroeconomics: The Consilience of
Brain and Decision

Paul W. Glimcher1* and Aldo Rustichini2

Economics, psychology, and neuroscience are converging today into a single, unified
discipline with the ultimate aim of providing a single, general theory of human
behavior. This is the emerging field of neuroeconomics in which consilience, the
accordance of two or more inductions drawn from different groups of phenomena,
seems to be operating. Economists and psychologists are providing rich conceptual
tools for understanding and modeling behavior, while neurobiologists provide tools
for the study of mechanism. The goal of this discipline is thus to understand the
processes that connect sensation and action by revealing the neurobiological
mechanisms by which decisions are made. This review describes recent develop-
ments in neuroeconomics from both behavioral and biological perspectives.

The full understanding of utility will

come from biology and psychology by

reduction to the elements of human

behavior followed by a bottom-up

synthesis, not from the social sciences

by top-down inference and guesswork

based on intuitive knowledge. It is in

biology and psychology that econo-

mists and social scientists will find the

premises needed to fashion more

predictive models, just as it was in

physics and chemistry that research-

ers found the premises that upgraded

biology. (p. 206) (1)

Consider the famous St. Petersburg para-

dox (2). Which of the following would you

prefer, /40 or a lottery ticket that pays

according to the outcomes of one or more

fair coin tosses: heads you get /2 and the

game ends, tails you get another toss and the

game repeats, but now if the second toss

lands heads up you get /4, and so on. If the

nth toss is the first to land heads up, you get

2n dollars. The game continues, however

long it takes, until the coin lands heads up.

We can assess the average objective, or

expected, value of this lottery by multiplying

the probability of a win on each flip by the

amount of that win:

Expected value 0 ð0:5 � 2Þ þ ð0:25 � 4Þ þ

ð0:125 � 8ÞI

0 1 þ 1 þ 1 þ I

This simple calculation reveals that the

expected value of the lottery is infinite even

though the average person is willing to pay

less than /40 to play it. How could this be?

For an economist, any useful explanation

must begin with a set of assumptions that

renders behavior formally tractable to coher-

ent theoretical and mathematical analysis.

Economists therefore explain this behavior

by assuming that the desirability of money

does not increase linearly, but rather grows

more and more slowly as the total amount at

stake increases. For example, the desirability

of a given amount might be a power function

1Center for Neural Science, New York University,
New York, NY 10003, USA. 2Department of Econom-
ics, University of Minnesota, Minneapolis, MN 55455,
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of that amount, as shown by the black line in

Fig. 1. A decision-maker for whom the

subjective value, or utility, of money grew

in this fashion would then determine the

desirability, or expected utility, of the St.

Petersburg lottery by multiplying the proba-

bility of a win on each flip by the utility of

the amount won on that flip, and thus he

might well be willing to pay less than /40 to

play this game.

From the point of view of a psychologist

attempting to understand and explain this

same phenomenon, it is the nature of risk

aversion and the psychological mechanisms

that this set of preferences reveals that

become the subject of explanatory study.

The psychological mechanism that accounts

for risk aversion in human subjects, for

example, has been shown to be more

sensitive to monetary losses than to mone-

tary gains. Further, psychologists have sug-

gested that subjective utilities are computed

with regard to somewhat arbitrary and

idiosyncratic monetary reference points, or

frames, set by yet other psychological pro-

cesses (3). Psychologists use observations

like these to argue that human choosers are

endowed with a particularly strong fear of

losses and that they weigh the merits of all

possible gains and losses relative to a

psychological benchmark: The psychological

approach seeks empirically to describe min-

imally complex behavioral tendencies, mod-

ules, or heuristics that can account for the

actions of human choosers.

A traditional neurobiological perspective

uses yet another approach: A hungry bird is

shown a tray that contains five millet seeds

and repeatedly permitted to fly to the tray

and eat the seeds. At a neurobiological level,

the study of this behavior begins with the

assumption that the visual stimulus of the

five seeds must somehow propagate through

the sensory system of the animal to trigger

activation in orienting circuits that move the

bird to the seeds. Next, the same bird is

permitted to fly to a second tray covered by a

piece of paper. When the bird displaces the

cover, half of the time it reveals 12 seeds and

half of the time it reveals nothing. Mecha-

nistically, the visual stimulus must again

trigger an orienting response, and presum-

ably in this case the strength with which

visual signals connect synaptically to the

orienting circuits reflects both the number of

seeds that the bird earns and the likelihood

that seeds will be found under the paper.

Lastly, both trays are presented, and the bird

is observed to fly toward the tray that may

contain 12 millet seeds. A standard neurobi-

ological explanation (4, 5) presumes that

under these circumstances the two different

behavioral circuits compete. In this case the

synapses that elicit an orienting response to

the covered tray are stronger and thus control

behavior. The neurobiological explanation

specifies the minimal neural circuitry re-

quired to account for the observed behavior

of the bird.

What is striking about explanations of

choice behavior by economists, psycholo-

gists, and neurobiologists is the different

levels at which they operate. The economic

approach attempts to describe globally all

choice behavior with a single logically con-

sistent formalism. The psychological ap-

proach examines the ways in which

subjective and objective estimates of value

differ and posits psychological modules that

can account for these observed behavioral

preferences. The neurobiological explanation

starts with the simplest possible neural

circuitry that can account for the simplest

measurable elements of behavior. It seems

obvious that these different levels of expla-

nation should be linked, but how can such a

linkage be accomplished? We argue that a

unified explanation of decision-making is

not only possible but has recently begun and

that, when the linkage between these three

levels of explanation has matured, a new,

more powerful decision science rooted in a

neuroeconomic approach will have been

developed.

A second claim we will make is that once

this reconstruction of decision science is

completed, many of the most puzzling

aspects of human behavior, aspects that

economic theory, psychological analysis, or

neurobiological deconstruction have failed to

explain, will become formally and mecha-

nistically explicable. The claim is, in essence,

that a decision science that simultaneously

engaged all three approaches would be more

heavily constrained and at the same time

would have much greater explanatory power

than do any of these three approaches

operating alone. We will see examples of

how this synthetic approach would operate in

principle and early attempts at synthetic

solutions below.

This reconstruction of the study of de-

cision is also going to be the appropriate

basis for a more ambitious theory that ex-

plains not just how we make decisions but

why. That such an explanation is necessary

and possible is indicated by the fact that

fundamental features of decision making are

common to many species. For example, risk

aversion as shown by the St. Petersburg

paradox has been described in many species.

Studies of birds making choices in risky

environments produce a behavior best de-

scribed by a utility function (Fig. 1) (6, 7).

We know that humans and birds deviated

from a common reptilian ancestor at least

200 million years ago, but this basic function

for choice has remained essentially un-

changed. Such commonalities make a clear

suggestion: A utility function of this type

probably is an efficient and evolved feature

of vertebrate choice. For example, Robson

(8) provides a justification of why a utility

function might be an evolutionary optimal

response to changing environments. Just as

information theory was used by Barlow (9)

to explain why animals as diverse as horse-

shoe crabs and cats use similar encoding

schemes in their visual systems, an econom-

ic theory that relates utility to Darwinian fit-

ness must serve as an overarching tool for

understanding vertebrate choice behavior.

Linking the Decision Sciences

Subjective desirability. The central concept

in modern economic theory is the notion of

subjective utility: Preferences must be de-

scribed as subjective properties of the

chooser. Surprisingly, the notion that prefer-

ences are represented in the nervous system,

that these preferences are subjective, and

that they guide the production of action has

only recently entered the neurobiological

mainstream. We believe that this has been a

critical flaw in neurobiological studies, be-

cause it is essential that economics, psy-

chology, and neuroscience acknowledge a

common phenomenological base to achieve

a reductive unification of the decision sci-

ences. The concepts that guide the behav-

ioral study of decision-making must also

guide the mechanistic study of that process.

In part, this preference-free approach

may have arisen from neurobiology’s roots

in the stimulus-response physiology of the

Value of a Gain
dollar, calories, milliliters

Convex Utility Fn:
Risk Seeking Subjective = Objective

Risk Neutral

Standard Utility Fn:
Risk Averse

Objective Measure
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Fig. 1. Bernoulli’s notion of subjective value or
utility. The black line plots the typical relation-
ship between objective and subjective valua-
tions of an action. As the objective value of a
gain increases, the subjective desirability, or
utility, grows more slowly. Bernoulli demon-
strated that this relationship could account for
the observation that humans are typically risk-
averse. The solid gray line plots a condition in
which subjective value grows more quickly than
objective value, a preference structure that
would yield risk-seeking behavior.
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early twentieth century (10). Working from

Descartes’ philosophy, Sherrington (11) pro-

posed that physiologists should work to

link stimulus and response directly through

what Pavlov (12) would later call a ‘‘definite

nervous path.’’ Scientists like Sherrington

and Pavlov proposed that it was the role

of neuroscience to chart these stimulus-

response connections through the nervous

system.

A critical step beyond this initial frame-

work was a recent effort to explain more

complicated behaviors and to focus on

actions for which deterministic sensory-to-

movement mapping approaches were insuf-

ficient. Newsome and his colleagues (13, 14)

made that step in the late 1980s when they

examined perceptual decision-making by

monkeys viewing ambiguous sensory stim-

uli. In those experiments, monkeys stared at

a display of chaotically moving spots of

light. On training trials, a subset of the spots

moved coherently in a single direction,

whereas the remaining spots moved ran-

domly (15). The direction of this coherent

motion indicated which of two

possible saccadic eye move-

ments would yield a fruit juice

reward, and at the end of each

trial animals were free to make a

saccade. If they made the correct

movement, they then received

the reward. On a critical sub-

set of trials, however, monkeys

viewed displays in which none

of the dots moved in a single

coherent direction, and thus the

display provided no information

from which the location of the

rewarded eye movement could

be deduced. Under these conditions, Newsome

and his colleagues found that the firing

rates of single neurons in the middle tem-

poral visual area (area MT) were still cor-

related with the behavior of the animals,

even when that behavior could not be pre-

dicted from the properties of the stimulus.

Newsome and his colleague Shadlen’s sub-

sequent studies revealed the basic neuro-

biological substrate for perceptual decision-

making and showed convincingly that this

circuit could not be modeled simply as a

single ‘‘definite nervous path’’ from stimu-

lus to response (16).

This work, in turn, accelerated studies of

the posterior parietal cortex, an area inter-

posed between many of the sensory circuits

and motor circuits of the primate brain,

which appeared to play a critical role in the

perceptual decision-making Newsome has

studied (17, 18). Platt and Glimcher (19)

made an important advance when they

extended Newsome’s approach by proposing

that posterior parietal cortex might play a

role in decision-making in an economic

sense and that it might encode the desirabil-

ities of making particular movements.

In Platt and Glimcher’s experiments,

trained rhesus monkeys were allowed to

participate in repeated rounds of a simple

lottery while the activity of nerve cells in the

posterior parietal cortex was monitored. At

the beginning of each round, two yellow

spots were illuminated on a screen, one to

the left and one to the right of where the

monkey was looking. This began the lottery

phase of the round, a period during which

the monkey did not know whether the left or

right light would be offered as a prize at the

end of that round. At the end of this phase, a

third light changed color to red or green,

indicating which of the two initial lights had

been randomly selected to yield a fruit juice

reward on that particular round. The monkey

received the fruit juice if he oriented to the

selected light at the end of the round. While

monkeys played hundreds of rounds of this

game, Platt and Glimcher systematically

varied either the relative probabilities that

the left or right lights would be selected at

the end of each round or the size of the

reward associated with each. These two

variables were selected because economic

theories assess desirability by combining the

value and likelihood of gain in some

subjective manner. Platt and Glimcher found

that some parietal neurons did indeed encode

the value and likelihood of reinforcement

during the lottery phase of each round.

Under these conditions, the brains of the

monkeys explicitly encoded something very

much like the economically defined expected

value or expected utility of each light in this

simple lottery task.

Subsequent studies of human decision-

making using functional magnetic resonance

imaging (fMRI) have yielded similar con-

clusions. Knutson and colleagues (20) have

shown, for example, that activity in the hu-

man striatum is correlated with the magni-

tude of the monetary reward subjects earn

during lotteries, and Paulus and colleagues

(21) have shown a similar result in the

human posterior parietal cortex. In a partic-

ularly interesting study, Breiter and col-

leagues (22) (Fig. 2) presented human

subjects on sequential rounds with one of

three possible lotteries. In lottery one (the

good lottery), they faced equal chances of

winning /10, /2.50, or /0. In lottery two (the

intermediate lottery), they faced equal chan-

ces of winning /2.50, winning /0, or losing

/1.50. In lottery three (the bad lottery), they

faced equal chances of winning /0, losing

/1.50, or losing /6. At the beginning of each

round, the subjects were told which lottery

they would be playing, and the average

activity in many brain areas was simulta-

neously measured. After that measurement

was complete, the lottery was actually

played and the humans were then told how

much real money they had earned on that

round. Importantly, all three of these lotteries

present a one-third possibility of winning

/0, but they do so under different conditions.

In the good lottery, winning /0 is the worst

possible outcome, whereas in the bad lottery

it is the best. The psychologists Kahneman

and Tversky (23) have shown that, when a

human participates in this good lottery, they

find winning /0 to be an intensely

negative outcome whereas when

a human participates in the bad

lottery, they find winning /0 to be

a positive outcome; subjective

utilities are computed with regard

to a reference frame. Breiter and

colleagues found that the activity

of the sublenticular extended

amygdala encoded the desirabil-

ity of each lottery, taking into ac-

count this behaviorally described

framing effect.

Other recent neurobiological

studies have revealed yet other

neurally encoded variables that include the

log likelihood that a given eye movement

will result in a reward (24, 25), the very

closely related integral of perceptual signals

indicating which saccade will be rewarded in

the Newsome task (26, 27), the average rate

at which a saccade has been rewarded in the

recent past (28), the instantaneous likeli-

hood, or hazard, that a reinforced saccade

will be instructed (29), and combinations of

these variables (30).

Strategic thinking. All of these results

suggest that classical utility theory can be

used as a central concept for the study of

choice in economics, psychology, and neu-

roscience. In the middle of the twentieth

century, however, economists pushed utility

theory beyond this boundary, enhancing it

to include the study of the strategic

interactions which arise when decision

makers confront intelligent opponents.

Extending the concept of subjective utility,

VonNeumann and Morgenstern (31) and

Nash (32, 33) developed a formal utility-

based economic approach in the theory of

Good

$10

$0

$2.50

Int.

$2.50 $0

$1.50
loss

Bad

$0 $1.50
loss

$6
loss

Fig. 2. The three lotteries used in the Breiter and colleagues experiment.
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games. Recently, Lee and his colleagues (34)

and Dorris and Glimcher (35) have begun to

link the neurobiological corpus to this

literature by examining the activity of single

neurons in awake-behaving monkeys en-

gaged in decision-making during strategic

conflicts. In Dorris and Glimcher’s study,

two opponents face each other, an employer

and an employee. On each round of the game

the employee must decide whether to go to

work, in which case he earns a fixed wage,

or whether to shirk, in hopes of earning his

wage plus a bonus. The goal of the employee

is simply to maximize his gains in terms of

salary and bonus. The employer, on the other

hand, must decide between trusting his em-

ployee to arrive for work or spending money

to hire an inspector who can actually check

and see whether the employee arrived for

work that day. The goal of the employer is to

spend as little as possible on inspections while

maximizing the employee’s incentive to work.

The inspection game is

of particular interest to game

theorists and economists be-

cause rational strategies for

utility maximization during

this strategic conflict lead

to predictable outcomes ac-

cording to an equilibrium

theory originally developed

by John Nash in the 1950s.

Nash (36) equilibrium theo-

ry describes how, when the

cost of inspection to the

employer is set high, the

efficient strategy for both

players converges on a solu-

tion in which the employ-

ee manages to shirk fairly

often. Conversely, a low in-

spection cost to the employer defines a

theoretical equilibrium solution in which

shirk rates are low. One of the fundamental

insights this formal analysis reveals is that at

a mixed strategy equilibrium, a situation in

which a rational player should distribute his

actions amongst two or more alternatives in

an unpredictable fashion, the desirability of

the two or more actions in equilibrium must

be equivalent. The Nash approach argues,

essentially, that a behavioral equilibrium oc-

curs when the desirability of working and

shirking are rendered equal by the behavior

of one’s opponent irrespective of how often

that equilibrium requires that one work.

When Dorris and Glimcher examined the

activity of neurons in the posterior parietal

cortex of monkeys playing the inspection

game, they found neurons that carried a sig-

nal that behaved like relative expected util-

ity. When the monkey’s behavior was well

predicted by the Nash equations, neural ac-

tivity was fixed at a single level irrespective

of the frequency with which the monkey

chose to make a particular response, even

though these same neurons were strongly

modulated by changes in the value of ac-

tions during lottery tasks.

Research on human-human strategic

interactions that are well described by

classical game theory are also now under

way in a number of laboratories (37). Like

the earlier fMRI studies of simple decision-

making tasks, these experiments are also

beginning to shape the common ground

between economics, psychology, and neu-

roscience. Taken together, these findings

suggest that at least under some circum-

stances decisions may actually be made in

the primate neuro-architecture in a manner

long suspected by economists and now

being actively analyzed by psychologists

and neuroscientists: Neural circuits may

compute and represent the desirability of

making a response. Economics, psycholo-

gy, and neuroscience do seem to be

converging around a common conceptual

framework. All three disciplines are begin-

ning to acknowledge that decision-making

involves the representation of subjective

desirabilities. The challenge that this con-

vergence around a single concept poses,

however, is to leverage the intersection of

these three disciplines to explain choice

behavior that cannot be described with the

common framework of utility theory; these

are classes of behaviors which have sty-

mied traditional economics and which have

lain far beyond the reach of traditional

neuroscience. If it is to be of value, the goal

of a unified decision science will have to be

to use all three sets of approaches simul-

taneously to gain traction in this new

territory.

Beyond Classical Concepts

Choice under risk. As we have seen, the

introduction of the concept of expected utility

solved the St. Petersburg’s puzzle and formed

the core of neoclassical economics. Sub-

sequent puzzles and paradoxes, however, have

plagued this solution. In Ellsberg’s (1961)

paradox (38) (Fig. 3) you are presented with

an urn, and you are told that it contains 90

balls. Of these, 30 are blue, and 60 are either

red or yellow; any proportion is possible.

You are then offered a choice between a

lottery that pays /100 if a blue ball is drawn

(a 1/3 probability) and one that pays /100 if a

red ball is drawn. The probability of a red

draw is unspecified or ambiguous: It is a

choice between an event with a known

probability and an event with an unknown

probability. Under these circumstances, peo-

ple typically choose the first lottery, which

wins if a blue ball is drawn. According to

expected utility theory they could only do so

if they believe that there are fewer than 30

red balls in the urn or, equivalently, that

there are more than 30 yellow balls. Then

(before any balls are actually drawn, but with

the same urn standing in front of you) you

are asked to choose again,

this time between a lottery

that pays /100 on either

blue or yellow and one that

pays /100 on either red or

yellow. Now the likelihood

of winning is clear in the

second case (a 2/3 proba-

bility of winning /100) but

unclear in the first case (a

probability between 1/3

and 1). People this time

typically choose the second

lottery. The first lottery

seems less attractive, be-

cause there might be too

few yellow balls. Is there

anything wrong with this

behavior? If expected util-

ity theory is correct, then there certainly is:

You cannot think that there are too few and

too many yellow balls in the urn at the same

time.

The Ellsberg paradox is just one of many

demonstrations presented in the last half of

the twentieth century that were considered

formal falsifications of expected utility

theory. An even earlier example is Allais’

paradox (39), based on the idea that a certain

outcome may be perceived as more desir-

able, in a qualitatively different way, than

any random outcome, even if very likely

(40). These examples proved that expected

utility theory as originally proposed could

not be globally correct; at best it could only

predict choices under some circumstances.

This has led economists and social psychol-

ogists both to attempt modifications to

expected utility theory and to replace it

outright. Both the modifications and replace-

ments have provided important and econom-

ically powerful insights into choice behavior

but have not yet provided a global theory of

Ellsberg’s Paradox

If blue is preferred then blue/yellow should also be preferred
but it is not.

30 blue
60 red+yellow

Choice 1

blue
$100

-or-

Number of Balls in Urn:

red
$100

30 x

Choice 2

blue/yellow
$100

-or-

Number of Balls in Urn:

red/yellow
$100

30+(60-x) 60

Fig. 3. Ellsberg’s paradox. If blue is preferred in choice one, then blue/yellow should
logically be preferred in choice two. Surprisingly, this is rarely the case.
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choice that can truly replace expected utility

theory.

The emerging discipline of neuroeconom-

ics offers a new strategy both for testing

existing models of all types and for devel-

oping new models with empirical techniques.

If we succeed in understanding mechanisti-

cally how choices that violate expected

utility theory are made at a neural level,

then a new global theory of choice will be

developed. To that end, a number of labo-

ratories are now beginning to reexamine the

conditions under which expected utility

theory fails.

The reason that expected utility theory

fails under some conditions may be that

choosers use more than one evaluative

mechanism at a neurobiological level (41).

For example, in Dickhaut et al. (42), the

processes involved when a certain outcome is

one of the options are different from

those involved when only random out-

comes are at stake, providing an ex-

planation of the Allais’ paradox cited

above.

Under many conditions these

mechanisms may work together to

yield choices similar to those pre-

dicted by expected utility theory but

may produce odd results when used

in isolation, in novel combinations,

or in situations for which they are

ill suited. Recent work by Damasio

and colleagues [for example, (43)]

on the class of behavioral paradoxes

from which the Ellsberg example is

drawn seem to support this conclu-

sion. These studies suggest that an

ambiguity-sensitive mechanism as-

sociated with the expression of emo-

tion may reside, at least in part, in

the ventromedial prefrontal cortex

(VMPFC) (Fig. 4) and may be re-

sponsible for choice under some but not all

conditions. These researchers and others

have shown that patients with damage to

this area have an impaired ability to make

some classes of decisions and have diffi-

culties planning their work and choosing

friends. Further, the actions these individu-

als do elect to pursue often lead to financial

as well as personal losses. Yet despite these

specific failures, patients with damage to

the VMPFC show normal performance on

multiple-choice tests of intelligence.

These observations and others like them

have led Damasio to propose that the

inability of patients with VMPFC lesions

to make advantageous decisions under

some circumstances is caused by damage

to an emotional mechanism that stores and

signals the value of future consequences of

an action, the somatic marker hypothesis.

The hypothesis proposes that, because they

lack this emotional mechanism, the patients

must rely on other brain mechanisms that

achieve a different analysis of the numer-

ous and often conflicting options involving

both immediate and future consequences.

This other mechanism, operating alone, is

hypothesized to produce decisions that are

less efficient and slower than those pro-

duced by a normal, intact, system.

The importance of the emotion-related

VMPFC for regular decision-making has

been confirmed by experiments where

subjects were asked to make choices among

a group of alternatives that carry a mone-

tary reward (typically by selecting one card

at a time from four different decks of

cards), but for which the probability of

reward is unspecified (44). This is precise-

ly the ambiguous situation that produces

Ellsberg’s paradox. Under these conditions,

patients with VMPFC lesions seem to lack

an aversion to ambiguity or losses that

normal subjects have, an aversion that may

be quite advantageous under many condi-

tions. Further support for this hypothesis

comes from brain imaging studies. For

example, O’Doherty et al. (45) have shown

that the VMPFC is relatively more active

when human subjects are actively learning

about the availability of rewards and punish-

ments during one of these ambiguous choice

tasks.

The process may be very different,

however, when subjects simply choose be-

tween options without any feedback or

learning taking place at the same time. For

example, Rustichini et al. (46) asked normal

subjects to make choices among ambiguous

lotteries, risky lotteries, and certain out-

comes while their brain activity was moni-

tored. Subjects were paid for the outcome of

their choices, but the outcome was commu-

nicated only after the experiment was over.

Under these conditions, the VMPFC did not

show any activation; it was actually less

active when choices were being made than

when subjects waited between trials. These

results suggest that emotional circuits may

be important in learning and processing

information, rather than in selecting among

alternatives.

Together, these data may begin to ex-

plain, in a mechanistic way, how information

is analyzed when at least one class of

behavior which is not predicted by the

expected utility theory is produced. The

process of learning and evaluating feedback

may involve emotion-related areas. Ambigu-

ity aversion, whether advantageous or disad-

vantageous in a particular situation, may

become explicable as we learn more about

the computations that brain areas like the

VMPFC perform.

Strategic cooperation. As with the

Ellsberg paradox, challenges have also

been raised recently to classical game

theory. In a path-breaking study, Guth

et al. (47) analyzed the behavior of

subjects playing the ultimatum game.

In this game, a first player, the pro-

poser, has /10 to split with a second

player. He can offer any amount be-

tween zero and /10. The second player

is informed of the offer and can ac-

cept or refuse. If she accepts, the split

is made. If she refuses, both players

get nothing. The prediction of a re-

strictive concept of game theory, the

subgame perfect equilibrium, is that

for any positive amount offered by the

proposer, the second player knows that

she faces a choice between gaining

nothing (if she refuses the offer) or

something (if she accepts). The pro-

poser should therefore always offer the

minimum possible split to player two,

who should always accept. Contrary to this

prediction, the robust experimental finding is

that low offers (typically /2 or even /3) are

consistently refused. The second player ap-

pears to prefer, under these conditions, to

gain nothing. Anticipating this, proposers typ-

ically avoid low offers.

Although expected utility theorists have

proposed some explanations for this be-

havior, it may well be that by analyzing

the neural circuits active during the ulti-

matum game we may be able to both ex-

plain the causes of this behavior and to

predict it. Studying the ultimatum game in

subjects undergoing brain scans, Sanfey

et al. (48) found that offers refused by the

second players activated specific brain cir-

cuits in those players, and interestingly

these brain circuits are also associated

with emotional arousal: the anterior insula

(AI, associated with disgust, both physical

and emotional), the dorsolateral prefrontal

Fig. 4. Medial view of the left half of a human brain, with the
front of the brain on the right side of the image. The human
ventromedial prefrontal cortex is shown in red.
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cortex (DLPFC, associated with goal main-

tenance and executive control), and the an-

terior cingulate cortex (ACC, associated with

detection of cognitive conflict). Also sig-

nificant is the correlation of activation with

choices: An activation of the AI is posi-

tively correlated with rejection, suggest-

ing that an emotional arousal associated

with a low offer is correlated with rejec-

tion. The overall picture is that offers we

might consider unfair may activate emo-

tional circuits of the brain involved in the

decision to reject an offer. If we can come

to more fully understand how these cir-

cuits reach this conclusion, then a behav-

ior that was difficult for classical game

theory to predict may become fully explica-

ble with the synthetic approach that neuro-

economics provides.

A similar line of investigation has exam-

ined interplayer cooperation during single

rounds of the trust game. In this game, two

players move sequentially. The first player

can decide to transfer a sum of money out of

an initial endowment that she receives into

an investment pool that immediately triples

in value. The second player then gains con-

trol of the investment and can divide it be-

tween the two players in any way he chooses.

In this game, the only Nash equilibrium

choice for the first player is to transfer

nothing into the investment. Were she to

make any transfer, the second player should

take all of the money for himself. However,

in real experiments the first player typically

does transfer a significant amount into the

investment, and the second player recipro-

cates by returning part of the pool. McCabe

et al. (49) had subjects play the trust game

both against a human opponent and against

a computer program which, they were told,

would play a human-like strategy. Under

these conditions McCabe and colleagues

found that subjects were more likely to

cooperate with real humans than with com-

puters and that cooperators have a signifi-

cantly different brain activation in the two

conditions. Cooperation is associated with

activation of the anterior paracingulate cor-

tex, a brain region associated with (50, 51)

interpreting and monitoring the mental state

of others.

Although these studies are in their early

stages, they suggest the existence of specific

brain components that make specialized

contributions to decision making. The chal-

lenge that these studies face is to derive

detailed computational models of the neural

mechanisms, which will make neuroeco-

nomic models broadly predictive as well as

explanatory.

Summary

Economics, psychology, and neuroscience

are converging into a single, unified field

aimed at providing a theory of human

behavior. In this enterprise, the method and

the standard set by neuroscience is the final

goal: a reconstruction of the process and

mechanism that goes from a stimulus pre-

sented to the subject to his final action in

response. Economics provides the conceptu-

al structure and the object of the analysis. In

this emerging view, people are seen as

deciding among options on the basis of the

relative desirability of each option. This is

true when they are in isolation as well as

when they are in strategic (interaction with

few persons) and market (interaction with a

large number) environments. The recent

research we have been surveying describes

how desirability is realized as a concrete

object, a neural signal in the human and

animal brain, rather than as a purely theoret-

ical construction. Desirability is computed

and is represented in the brain, and we now

have the means to test, measure, and rep-

resent this activation.

But the complete reconstruction of the

decision process, and hence of human

behavior, is not going to be easy, because

two of the cornerstones of economic

analysis, subjective utility theory and Nash

equilibrium, provide, even from the de-

scriptive point of view, an incomplete

picture. For example, desirability as repre-

sented by the simple economic formalism

of expected utility may be appropriate only

in simple conditions, where ambiguity is

excluded. A more general notion is needed

and, as we have seen, is beginning to be

investigated and developed by psycholo-

gists and economists working together. The

goal of the emerging neuroeconomic pro-

gram will have to be a mechanistic,

behavioral, and mathematical explanation

of choice that transcends the explanations

available to neuroscientists, psychologists,

and economists working alone. Although it

is unclear today how complete this expla-

nation will ultimately be, neuroeconomic

approaches have already begun to yield

substantial fruit and to fuse natural and

social scientific approaches to the study of

human behavior.
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